Author Archives: allysonjbennett

Beagle Freedom Project Uses Former Research Dogs to Spotlight its Anti-Research Campaign

Today’s guest post  is by Dr. Cindy Buckmaster, chair of Americans for Medical Progress.

Activists at the Beagle Freedom Project (BFP) continue to gather support for their agenda to end animal-based research – and some in the research community are unknowingly helping them.

Many of you have seen recent TV news items or read news articles that feature beagles said to have been saved from laboratories where they never had a toy, played with other dogs, or experienced kindness and love from people in research settings. The Beagle Freedom Project uses the limitations of the news media to create this one-sided and false impression of the lives of research dogs.

Individuals at research institutions interested in rehoming post-study animals are approached by adopters representing themselves as private citizens, eager to adopt dogs retired from research. These applicants don’t indicate that they are working with the Beagle Freedom Project. We know of several institutions that have fallen prey to this misrepresentation by the BFP: within days of adoption, their freely released animals are listed as ‘rescued’ by BFP, along with the activists’ usual anti-research propaganda.

As Chair of the Board of Directors of Americans for Medical Progress, as well as an animal lover and someone who directs an animal care program for a major research center in the US, I would like to tell you the real story.

dog, animal testing, animal experiment

Beagle in research

These dogs are NOT ‘rescued’ from research facilities. They’re voluntarily released by the lab animal caregivers who love and cherish them. Research institutions have been rehoming dogs for years, over forty in some cases, without ‘help’ from the Beagle Freedom Project.  That’s how BFP acquired these dogs to begin with: they adopted them from research animal caregivers who were fooled into believing that the adopters’ only intention was to provide research dogs with a good home. The truth is that these dogs were adopted for use as props to support an animal rights agenda that is harmful to public health and safety.

Readers should be aware that BFP is led by animal rights activists, including Kevin Chase (formerly Kevin Kjonaas) who was convicted and served several years in prison for violating the Animal Enterprise Protection Act. Kevin Kjonaas is the Director of Operations of BFP. The Founder and President of BFP is Shannon Keith. Ms. Keith was one of Kevin’s defense attorneys during his domestic terrorism trial. She also produced and directed “Behind the Mask”, a film released in 2006 that glorifies the Animal Liberation Front, a group known for illegal animal rights activity.

The bottom line is this: BFP personnel and associates misrepresent their intentions to the research institutions they target and then deceive the public about the condition and treatment of dogs in research. Why? To demonize the scientific quest for cures that you and I demand.

The welfare and well-being of research animals and our animal care programs are inspected and evaluated by local and federal authorities multiple times per year. Moreover, most of us VOLUNTEER for an intense accreditation review by international experts every three years to ensure that we are providing our animals with the best quality of life possible. A review of the photos and video BFP itself offers of recently released dogs reveals the truth behind BPF’s deception. The dogs’ body condition and coats are gorgeous because they receive top notch nutrition and veterinary care while they are with us. They’re friendly because they have enjoyed socialization and playtime with other dogs and with our caretakers who adore them. The public fails to see this with their own eyes because they have been brainwashed by animal rights extremists for decades…and they seem to prefer drama over the truth.

Tell me something: Why would people who allegedly care so little about these dogs, as BPF claims, offer them for adoption? It’s not a trivial process. Records of animal health and release have to be generated, and adopters have to be located and screened. If our institutions really wanted to hide their ‘dirty little research secrets’, why wouldn’t they just euthanize all of these dogs, rather than risk ‘exposure’ by offering them to the public, as has been suggested by BFP?

Our dogs are offered for adoption because we love them and are grateful for their contributions to human and animal well-being. We want these heroes to live long, healthy, fun lives with loving adopters who have the patience and information needed to help them adjust to their new families. What is heartbreaking is that some of our institutions have closed their adoption programs because they were either exploited directly by BFP, or they don’t know who to trust anymore.

When are you and I going to hold the Beagle Freedom Project accountable for caring more about its agenda than our precious heroes?!

We all love these dogs and we all wish that they weren’t still necessary for the development of treatments and cures for conditions like cancer, Hepatitis C and Ebola. For now, they are still needed. Until we find a better way – and we are working on it – this research will continue to improve the lives of our friends, families and pets. The public is grossly misinformed about the care of animals in biomedical research and thus, unwittingly, people are supporting agendas that will harm them and their loved ones. Our faith is with our fellow citizens – but they must hear both sides of this issue, presented fairly. The media has an especially critical role in getting this right and they have, in most cases, fallen short of the mark. I am hopeful that they will do better by our citizens in the future.

Cindy Buckmaster, PhD, CMAR, RLATG; Chair, Americans for Medical Progress

See also:

http://speakingofresearch.com/2013/11/26/jerry-the-beagle-and-the-liberation-that-wasnt/

Twelve months of Speaking of Research

Speaking of Research joins others in a year-end wrap up post.  As Drug Monkey says: “The rules for this blog meme are quite simple. Post the link and first sentence from the first blog entry for each month of the past year. I originally did this meme, after seeing similar posted by Janet Stemwedel and John Lynch. … If you blog, I encourage you to do your own year-end wrap up post.”

January: “2013 was a tough year for science in Italy, witnessing the theft by animal rights extremists of animals from a medical research laboratory in Milan and the passing by the Italian Parliament of a law that threatens the future of medical research in Italy.”

February: “We will be counter-demonstrating.”

March: “The animal rights group “Progress for Science” (P4S) made one more appearance last night to harass a UCLA professor at his home.”

April: “Last month Speaking of Research (SR) committee member Michael Brunt took part in an outreach lecture at the annual Ontario Association of Veterinary Technicians (OAVT) 2014 conference.”

May: “A common argument from animal rights organizations is that animal models cannot tell us anything useful about human medicine, that animal research is outdated, and should be replaced with other methods.”

June: “Today the British tabloid newspaper the Daily Mirror published a truly execrable piece of animal rights propaganda dressed up as journalism, in an article attacking neuroscience research undertaken using cats at University College London.”

July: “The Israeli newspaper, Haaretz, has reported on the 2013 animal testing statistics, which were recently released by the Health Ministry’s Council for Experimentation of Animals.”

August: “We have written thousands of tweets about animal research since we opened our accounts a little over five years ago.”

September: “Your scientific activism is only a click away. A new petition in Change.org urges the U. S. Surgeon General, Rear Admiral Boris D. Lushniak, to voice support for the humane, and regulated use of animals in medical research.”

October: “The British Union for the Abolition of Vivisection (BUAV) has campaigned against the use of animals in research since 1898.”

November: “Seven Nobel Laureates and the Presidents of seven major Israeli universities and research institutes are the signatories of an unprecedented letter that calls for to government to refrain to impose any additional limitations on the use of animals in research.”

December: “Only have a few moments to spare? Quick jump straight to one of the Five Ways to Help.”

1 hour explain animal testing

Child health benefits from studies of infant monkeys – Part 1

Health research with nonhuman primates takes place at many universities and research institutions in the US, among them centers funded by the National Institutes of Health (NIH).  A broad range of research aimed at better understanding maternal and child health takes place at these centers and depends, in part, upon humane, ethical scientific studies of infant monkeys.

A sample of the research areas and findings are highlighted below and provide a view of the value of developmental research. What even a short list shows is that the scope of scientific and medical research that informs pediatric health issues is large. It ranges from autism to childhood diabetes to leukemia to mental health to stem cell therapies.

Together, the findings from studies of infant monkeys have resulted in a better understanding of prenatal, infant, child, and maternal health. The scientific research has resulted in basic discoveries that are the foundation for a wide range of clinical applications and have also improved outcomes for premature and critically ill human infants.

Infant rhesus monkeys playing in nursery.  Wisconsin National Primate Research Center. @2014 University of Wisconsin Board of Regents

Infant rhesus monkeys playing in nursery. Wisconsin National Primate Research Center. @2014 University of Wisconsin Board of Regents

Studies of monkeys are a tiny fraction of all animal studies and are only conducted when studies of fish, mice, rats, or other animals are not sufficient to address the scientific question. Like all nonhuman animal studies, those of young monkeys are subject to rigorous ethical evaluation by scientists, by federal review panels, and institutional review boards that include veterinarians and members of the public.

The decision to conduct a study in nonhuman animals is one that rests on weighing both the potential benefit the work may provide and any potential for harm. The research below provides many specific examples of how and why the studies are conducted and their benefit. For each and every study, scientists, review panels, and ethics boards also consider the potential for harm that may result to the nonhuman animals that are involved. Whether there are any alternatives to the animal study is a requirement of the US system for ethical review and oversight. If there is no alternative, reduction in potential for harm is explicitly addressed not only by a set of standards for animal care, housing, handling, environmental enrichment, and medical care, but also by including only the number of animals needed to answer the scientific question. (You can read more about the review process, regulation, and care standards here and here).

Like other studies of nonhuman animals, those in young animals require serious and fact-informed ethical consideration. At the most fundamental level they challenge us to evaluate how we should balance work that ultimately can help children, the harm that may result from a failure to act, potential harm to animals in research. Consideration of how to balance the interests of children, society, and other animals is not an easy task. Nor is it one that is well-served by simple formulations.

Primate studies of early development have, and continue, to contribute valuable new insights and discoveries that improve the health and lives of many.  The examples below, from NIH-funded research programs across the US, demonstrate how the work contributes to public health.

Sources:  National Primate Research Centers Outreach Consortium. For more information about the NPRCs, see:  http://dpcpsi.nih.gov/orip/cm/primate_resources_researchers#centers

EXAMPLES OF PEDIATRIC RESEARCH WITH MONKEYS

Autism

Cerebral Palsy

  • One outcome of premature birth and accompanying brain injury can be Cerebral Palsy (CP). To date, studies at the Washington National Primate Research Center’s (WaNPRC) Infant Primate Research Laboratory (IPRL) have described the metabolome of normal birth and discovered new acute biomarkers of acute hypoxia‐ This multi‐modal approach will increase the likelihood of identifying reliable biomarkers to diagnose the degree of injury and improve prognosis by tracking the response to treatment after neonatal brain injury. (http://www.ncbi.nlm.nih.gov/pubmed/22391633, http://www.ncbi.nlm.nih.gov/pubmed/21353677)

Childhood Leukemia

  • Wisconsin National Primate Research Center (WNPRC) scientists James Thomson and Igor Slukvin turned diseased cells from a leukemia patient into pluripotent stem cells, providing a way to study the genetic origins of blood cancers as well as the ability to grow unlimited cells for testing new drugs for chronic myeloid leukemia, childhood leukemia and other blood cancers. (http://www.news.wisc.edu/18933 and http://www.ncbi.nlm.nih.gov/pubmed/21296996)

Diabetes and Childhood Obesity

  • Normal and obese marmosets were followed by Suzette Tardif at the Southwest National Primate Research Center (SNPRC) from birth to 1 year. At 6 months, obese marmosets already had significantly lower insulin sensitivity and by 12 months, they also had higher fasting glucose, demonstrating that early-onset obesity in marmosets resulted in impaired glucose function, increasing diabetes risk. (http://www.ncbi.nlm.nih.gov/pubmed/23512966)
  • Infant marmosets were followed by Suzette Tardif at the SNPRC from birth to 1 year. Feeding phenotypes were determined through the use of behavioral observation, solid food intake trials, and liquid feeding trials. Marmosets found to be obese at 12 months of age started consuming solid food sooner and drank more grams of diet thus indicating that the weaning process is crucial in the development of juvenile obesity in both NHPs and human. (http://www.ncbi.nlm.nih.gov/pubmed/23512878)

Diet

Environmental threats

HIV/AIDS

  • Scientists at the CNPRC developed the SIV/rhesus macaque pediatric model of disease, to better understand the pathogenesis of SIV/HIV in neonates and test strategies for immunoprophylaxis and antiviral therapy to prevent infection or slow disease progression. Drug therapies used to prevent the transmission of HIV from mother to infant were developed in nonhuman primate models at the CNPRC, and are now being successfully used in many human populations to protect millions of infants from contracting HIV. (http://www.cnprc.ucdavis.edu/koen-van-rompay/)
  • Development of topical vaginal microbicides to prevent babies from contracting HIV from their mothers during delivery was advanced by Eva Rakasz at the WNPRC and her collaborators. Dr. Rakasz was also a member of the National Institutes of Health study section, Sexually Transmitted Infections and Topical Microbicides Clinical Research Centers. (http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3032991/, http://www.who.int/hiv/topics/microbicides/microbicides/en/)
  • In a model of mother to child transmission, research at the WaNPRC and the ONPRC has shown that neutralizing antibodies can block infection at high doses and prevent disease and death at lower doses in one-month old monkeys exposed to a chimeric SIV that bears the HIV Envelope protein. Human monoclonal antibodies currently in clinical trials are in testing alone and in combination with drug therapy in this primate model as a less toxic alternative to supplement or supplant drugs in newborns. (http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2952052/, http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3807376/)
  • In women who are HIV positive, prenatal consumption of AZT is useful for reducing the risk that the unborn fetus will contract HIV. Research done at the WaNPRC IPRL demonstrated that the effects of AZT on maternal reproduction and infant development were minimal and at the doses studied, no significant adverse health effects from prenatal exposure to AZT were predicted for pregnant women. (http://www.ncbi.nlm.nih.gov/pubmed/23873400, http://www.ncbi.nlm.nih.gov/pubmed/8301525)
  • A goal of Yerkes National Primate Research Center (YNPRC) infectious disease researchers is to identify the sources of the latent HIV reservoir so targeted cure strategies can be developed. A first step is to develop a novel model of SIV infection and cART treatment of nonhuman primate (NHP) infants to interrogate the SIV reservoir. The development of such a model will greatly facilitate future studies of SIV reservoirs and the design and testing of novel reservoir-directed therapeutic strategies before scaling to clinical trials in HIV-infected patients.
  • YNPRC infectious disease researchers found the percentage of CD4+CCR5+ T cells was significantly lower in all tissues in infant sooty mangabeys (SMs) as compared to infant rhesus macaques (RMs) despite robust levels of CD4+ T cell proliferation in both species. The researchers propose that limited availability of SIV target cells in infant SMs represents a key evolutionary adaptation to reduce the risk of mother-to-infant transmission (MTIT) in SIV-infected SMs. The researchers are applying their findings toward reducing the more than 300,000 cases diagnosed in children each year. (http://www.plospathogens.org/article/info%3Adoi%2F10.1371%2Fjournal.ppat.1003958)

Huntington’s Disease

  • YNPRC researchers have successfully created a transgenic, preclinical animal model of Huntington’s disease (HD). These animals, when followed from infancy to adulthood, show progressive motor and cognitive associated with neural changes similar with the disease patterns seen in humans. Not having such a model has been a major roadblock to developing effective therapies for the disease.
    (http//www.ncbi.nlm.nih.gov/pubmed/18488016; http//www.ncbi.nlm.nih.gov/pubmed/24581271)

Lung Development and Function

  • CNPRC research discovered a link between an infant’s temperament and asthma– research is leading towards the screening, prediction and prevention of lung disease in children. (http://www.ncbi.nlm.nih.gov/pubmed/21536834)
  • Research at the CNPRC has shown that exposure to high levels of fine particle pollution (e.g. wildfire smoke) adversely affects both development of the immune system and lung function(http://www.cnprc.ucdavis.edu/long-term-impact-of-air-pollutants/)
  • Childhood asthma research by the CNPRC focuses on understanding why children are highly susceptible to asthma, with the goal of identifying predictive biomarkers and discovering preventive treatments. These studies use a novel rhesus monkey model of house dust mite sensitization to investigate the pathogenesis of allergic asthma in pediatric and adult asthma. The goal is to define the relationship between pediatric asthma, development of mucosal immunity in the respiratory system, and exposure to the house dust mite allergen. (http://www.ncbi.nlm.nih.gov/pubmed/21819959)
  • Eliot Spindel at the ONPRC has shown that large doses of Vitamin C can protect developing lungs from the damage caused when mothers smoke. This work has been duplicated in clinical trials. (http://www.ncbi.nlm.nih.gov/pubmed/15709053)

Kidney Disease, Organ Transplants, Lupus

  • WNPRC scientists and surgeons at UW Hospital successfully tested a new compound, mycophenolate mofetil, in combination with other drugs in monkeys and other animals, and then in human patients in the 1990s. Their work has saved the lives of patients needing kidney or other organ transplants. These new therapies have also kept patients with chronic kidney diseases, including lupus nephritis, which strikes many children and teens, from needing transplants. (Hans Sollinger, Folkert Belzer, Stuart Knechtle, others.) (http://www.ncbi.nlm.nih.gov/pubmed/8680054, http://www.ncbi.nlm.nih.gov/pubmed/9706169, http://www.ncbi.nlm.nih.gov/pubmed/8821838


Memory Impairment

Polycystic Ovary Syndrome

Puberty Disorders

Prenatal and Mental health

  • Studies at the WaNPRC IPRL have provided important and therapeutically relevant information on the fetal risk associated with maternal exposure to antiseizure medication in infants born to women who have epilepsy (Phillips & Lockard, 1985, 1993). (http://www.ncbi.nlm.nih.gov/pubmed/23873400)
  • Human and animal studies at the SNPRC revealed that the intrauterine environment can predispose offspring to disease in later life. Mark Nijland showed that maternal obesity can program offspring for cardiovascular disease (CVD), diabetes and obesity. This study revealed significant changes in cardiac miRNA expression (known to be affected in human cardiovascular disease) and developmental disorders in the fetuses of obese baboons. (http://www.ncbi.nlm.nih.gov/pubmed/23922128)
  • Studies in the WaNPRC IPRL have demonstrated that prenatal exposure to relatively high levels of ethanol (alcohol) was associated with significant changes in the structure of the fetal brain. (http://www.ncbi.nlm.nih.gov/pubmed/23873400)
  • Recent findings from nonhuman primates studied by Ned Kalin at the WNPRC suggest that an overactive core circuit in the brain, and its interaction with other specialized circuits, accounts for the variability in symptoms shown by patients with severe anxiety. The ability to identify brain mechanisms underlying the risk during childhood for developing anxiety and depression is critical for establishing novel early-life interventions aimed at preventing the chronic and debilitating outcomes associated with these common illnesses. (http://www.ncbi.nlm.nih.gov/pubmed/23538303, http://www.ncbi.nlm.nih.gov/pubmed/23071305)
  • Developmental studies with nonhuman primates at the YNPRC have revealed that neonatal dysfunction of the amygdala, a key brain structure, has long-lasting effects on the typical development of brain circuits that regulate behavioral and neuroendocrine stress, resulting in long-term hyperactivity.  These findings may provide clues on the neural source of HPA axis dysregulation found in autism spectrum disorder, schizophrenia and affective disorders.  (http://www.ncbi.nlm.nih.gov/pubmed/23159012, http://www.ncbi.nlm.nih.gov/pubmed/24986273, http://www.ncbi.nlm.nih.gov/pubmed/25143624)

Preterm Birth and Neonatal Outcomes

  • Current research at the ONPRC incorporates studies directed at understanding the mechanisms of parturition, with emphasis on therapeutic interventions for preterm labor associated with reproductive tract infections and the prevention of subsequent adverse neonatal outcomes. Intra-amniotic infection by genital Ureaplasma species is a predominant cause of early preterm birth. Preterm infants often have life-long health complications including chronic lung injury, often leading to asthma and neurodevelopmental disabilities such as cerebral palsy. Research by ONPRC’s Dr. Grigsby has shown that administration of a specific macrolide antibiotic delays preterm birth and reduces the severity of fetal lung injury and most importantly central nervous system injury. Recently Dr. Grigsby has expanded the infant care facilities at the ONPRC with the addition of a specialized intensive care nursery (SCN); this has enabled new research initiatives to expand beyond the maternal-fetal environment to a critical translation point between prenatal and postnatal life. This one-of-a-kind nursery has the look and feel of a human neonatal intensive care unit and supports the cardiopulmonary, (including mechanical ventilation), thermoregulatory, and nutritional needs of prematurely born infants. (http://www.ncbi.nlm.nih.gov/pubmed/23111115, http://www.ncbi.nlm.nih.gov/pubmed/24179112)

Regenerative Medicine

  • Studies at the CNPRC have advanced the understanding of developmental timelines in the kidney, and applied these findings to new protocols and tissue engineering approaches to someday regenerate kidneys damaged by obstructive disease. (http://www.ncbi.nlm.nih.gov/pubmed/23997038)

Stem Cells and Gene Therapy:

  • The first pluripotent stem cell derived clinical trials to treat childhood blindness are now underway, using stem cell technologies discovered using monkeys first, then humans, by WNPRC scientist James Thomson in the 1990s-2000s. (https://clinicaltrials.gov/ct2/results?term=juvenile+macular+degeneration+stem+cell&Search=Search, http://www.ncbi.nlm.nih.gov/pubmed/18029452, http://www.ncbi.nlm.nih.gov/pubmed/9804556, http://www.ncbi.nlm.nih.gov/pubmed/7544005
  • To successfully treat human disease with stem cells, physicians will require safe, reliable, and reproducible measures of engraftment and function of the donor cells. Innovative studies at the CNPRC have revolutionized the ability to monitor stem/progenitor cell transplant efficiency in fetal and infant monkeys, and have used new noninvasive imaging techniques that demonstrated long-term engraftment and safety. (http://www.ncbi.nlm.nih.gov/pubmed/24098579)
  • Studies at the CNPRC have proven critical in gaining approval for investigational new drug (IND) applications to the FDA and conducting first-in-human trials of (1) an expressed siRNA in a lentiviral vector for AIDS/lymphoma patients,, and (2) achieving the overall goal of utilizing adeno-associated virus (AAV) expression of human acid alpha-glucosidase in 3 to 14-year-old Pompe patients who have developed ventilator dependence.

Tuberculosis and HIV

  • Mycobacterium tuberculosis (Mtb) is the causative agent of human tuberculosis (TB) with an estimated 8.8 million new TB cases and 1.4 million deaths annually. Tuberculosis is the leading cause of death in AIDS patients worldwide but very little is known about early TB infection or TB/HIV co-infection in infants. SNPRC scientist Marie-Claire Gauduin and colleagues have successfully established an aerosol newborn/infant model in nonhuman primates (NHPs) that mimics clinical and bacteriological characteristics of Mtb infection as seen in human newborns/infants. Aerosol versus intra broncho-alveolar Mtb infection was studied. After infection, specific lesions and cellular responses correlated with early Mtb lesions seen on thoracic radiographs were observed. This model will also allow the establishment of a TB coinfection model of pediatric AIDS. (http://www.ncbi.nlm.nih.gov/pubmed/24388650)

 

Harlow Dead, Bioethicists Outraged

harlow plaque jpeg (2)

The philosophy and bioethics community was rocked and in turmoil Friday when they learned that groundbreaking experimental psychologist Professor Harry Harlow had died over 30 years ago. Harlow’s iconic studies of mother and infant monkeys have endured for decades as the centerpiece of philosophical debate and animal rights campaigns.  With news of his death, philosophers worried that they would now need to turn their attention to new questions, learn about current research, and address persistent, urgent needs in public consideration of scientific research and medical progress. Scientists and advocates for a more serious contemporary public dialogue were relieved and immediately offered their assistance to help others get up to speed on current research.

To close the chapter, psychologists at the University of Wisconsin provided the following 40 year retrospective on Harlow’s work and its long-term impact (see below).

Internet reaction to the scientists’ offering was swift, fierce, and predictable.

“We will never allow Harlow to die,” said one leading philosopher, “The fact is that Harlow did studies that are controversial and we intend to continue making that fact known until science grinds to a halt and scientists admit that we should be in charge of all the laboratories and decisions about experiments. It is clear to us that we need far more talk and far less action. Research is complicated and unpredictable–all that messiness just needs to get cleaned up before research should be undertaken.”

Animal rights activists agreed, saying:

“For many decades Harlow and his monkeys have been our go-to graphics for protest signs, internet sites, and articles. It would simply be outrageously expensive and really hard to replace those now. Furthermore, Harlow’s name recognition and iconic monkey pictures are invaluable, irreplaceable, and stand by themselves. It would be a crime to confuse the picture with propaganda and gobbledygook from extremist eggheads who delusionally believe that science and animal research has changed anything.”

Others decried what they viewed as inappropriate humorous responses to the belated shock at Harlow’s passing.

“It is clear to us that scientists are truly diabolical bastards who think torturing animals is funny. Scientists shouldn’t be allowed to joke. What’s next? Telling people who suffer from disease that they should just exercise and quit eating cheeseburgers?” said a representative from a group fighting for legislation to outlaw food choice and ban healthcare for non-vegans and those with genetic predispositions for various diseases.

A journalist reporting on the controversial discovery of Harlow’s death was overheard grumbling, “But what will new generations of reporters write about? Anyway, the new research is pretty much the same as the old research, minus all the complicated biology, chemistry, and genetic stuff, so it may as well be Harlow himself doing it.”

A fringe group of philosophers derisively called the “Ivory Tower Outcasts” for their work aimed at cross-disciplinary partnerships in public engagement with contemporary ethical issues made a terse statement via a pseudonymous social media site.

“We told you so. Harlow is dead. Move on. New facts, problems require thought+action (ps- trolley software needs upgrade, man at switch quit)”

Harlow himself remained silent. For the most part, his papers, groundbreaking discoveries, and long-lasting impact on understanding people and animals remained undisturbed by the new controversy.

Statement from Psychologists:

Harlow’s career spanned 40+ years and produced breakthroughs in understanding learning, memory, cognition and behavior in monkeys1 (see Figure 1). In a time period where other animals were generally thought of as dumb machines, Harlow’s work demonstrated the opposite — that monkeys, like humans, have complex cognitive abilities and emotional attachments. Harlow and his colleagues developed now classic ways to measure cognition2,3. For example, the Wisconsin General Test Apparatus (WGTA; see Figure 1), in which monkeys uncover food beneath different types of colored toys and objects, allowed scientists to understand how monkeys learn new things, remember, and discriminate between different colors, shapes, quantities, and patterns.

The discoveries of Harlow and his colleagues in the 1930s and forward provided the foundation not only for changes in how people view other animals, but also for understanding how the brain works, how it develops, and –ultimately–how to better care for people and other animals.

Figure 1

Figure 1

In the last decade of his long career, Harlow, his wife Margaret– a developmental psychologist, and their colleagues, again rocked the scientific world with a discovery that fundamentally changed our biological understanding.3 Contrary to prevailing views in the 1950s and before, the Harlows’ studies of infant monkeys definitively demonstrated that mother-infant bonds and physical contact—not just provision of food—are fundamentally important to normal behavioral and biological development. Those studies provided an enduring empirical foundation for decades of subsequent work that shed new light on the interplay between childhood experiences, genes, and biology in shaping vulnerability, resilience, and recovery in lifespan health.

For a brief time at the very end of his career, Harlow performed a small number of studies that have served as the touchstone for philosophers, animal rights groups, and others interested in whether and how animal research should be done. The most controversial of the studies are known by their colloquial name “pit of despair” and were aimed at creating an animal model of depression. In this work, fewer than 20 monkeys were placed in extreme isolation for short periods (average of 6 weeks) following initial infant rearing in a nursery.

At the time, the late 1960s, the presence of brain chemicals had recently been identified as potentially critical players in behavior and mental illnesses like depression and schizophrenia. New understanding and treatment of the diseases was desperately needed to address the suffering of millions of people. Available treatments were crude. They included permanent institutionalization– often in abject conditions, lobotomy (removing part of the brain), malaria, insulin, or electric shock therapies. As some scientists worked to uncover the role of brain chemicals in behavior and mood, others worked to produce drugs that could alter those chemical networks to relieve their negative effects. In both cases, animal models based on similar brain chemistry and biology were needed in order to test whether new treatments were safe and effective. It was within this context that Harlow and his colleagues in psychiatry studied, in small numbers, monkeys who exhibited depressive-like behaviors.

By the 1970s and over the next decades, scientists produced medications that effectively treat diseases like schizophrenia and depression for many people. The therapies are not perfect and do not work for everyone, which is why research continues to identify additional and new treatments. Regardless, there is no question that the suffering of millions of people has been reduced, and continues to be alleviated, as a result of new medications and new understanding of the biological basis of disease.

Infant rhesus monkeys playing in nursery.  Wisconsin National Primate Research Center. @2014 University of Wisconsin Board of Regents

Infant rhesus monkeys playing in nursery. Wisconsin National Primate Research Center. @2014 University of Wisconsin Board of Regents

Looking back while moving forward

Nearly 50 years later, it is difficult to imagine the time before MRI and neuroimaging and before the many effective treatments for depression, schizophrenia and other diseases. It is perhaps even more difficult to imagine a time in which people believed that genes and biology were destiny, that other animals were automatons, or that mothers were only important because they provided food to their children. Casting an eye back to the treatment of monkeys, children, and vulnerable human populations in medical and scientific research 50 years ago, or even 30 years ago, is difficult as well. Standards for ethical consideration, protections for human and animal participants in research, and the perspectives of scientists, philosophers, and the public have all continued to change as knowledge grows. Yet, what has not changed is an enduring tension between the public’s desire for progress in understanding the world and in reducing disease and the very fact that the science required to make that progress involves difficult choices.

There are no guarantees that a specific scientific research project will succeed in producing the discoveries it seeks. Nor is there a way to know in advance how far-ranging the effect of those discoveries may be, or how they may serve as the necessary foundation for work far distant. In the case of Harlow’s work, the discoveries cast a bright light on a path that continues to advance new understanding of how the brain, genes, and experiences affect people’s health and well-being.

Mother and infant swing final

Mother and juvenile rhesus macaque at the Wisconsin National Primate Research Center. @2014 University of Wisconsin Board of Regents

 

 

 

 

 

 

 

In the 30 years since Harlow’s death, new technologies and new discoveries—including brain imaging (MRI, PET), knowledge about epigenetics (how genes are turned on and off), and pharmacotherapies—have been made, refined, and put into use in contemporary science. As a result, scientists today can answer questions that Harlow could not. They continue to do so not because the world has remained unchanged, or because they lack ethics and compassion, but because they see the urgent need posed by suffering and the possibility of addressing global health problems via scientific research.

Harlow’s legacy is a complicated one, but one worth considering beyond a simple single image because it is a legacy of knowledge that illustrates exactly how science continues to move forward from understanding built in the past. An accurate view of how science works, what it has achieved, what can and cannot be done, are all at the heart of a serious consideration of the consequences of choices about what scientific research should be done and how. Harlow and his studies may well be a touchstone to start and continue that dialogue. But it should then be one that also includes the full range of the work, its context and complexity, rather than just the easy cartoon evoked to draw the crowd and then loom with no new words.

Allyson J. Bennett, PhD

The author is a faculty member at the University of Wisconsin-Madison.  The views and ideas expressed here are her own and do not necessarily represent those of her employer.

Suomi SJ & Leroy, HA (1982) In Memoriam: Harry F. Harlow (1905-1982). American Journal of Primatology 2:319-342. (Note: contains a complete bibliography of Harlow’s published work.)

2Harlow HF & Bromer J (1938). A test-apparatus for monkeys. Psychological Record 2:434-436.

3Harlow HF (1949). The formation of learning sets. Psychological Review 56:51-65

4Harlow HF (1958). The nature of love. American Psychologist 13:673-685.

Why is alcohol research with nonhuman animals essential?

The following guest post is from Jeff Weiner, a Professor in the Department of Physiology and Pharmacology at Wake Forest School of Medicine.  Dr. Weiner is the Director of an NIH-funded translational research grant that employs rodent, monkey and human models to study the neurobiological substrates that contribute to alcohol addiction vulnerability.  He is also a founding Co-Chair of a new Animal Research and Ethics committee established by the Research Society on Alcoholism.

Jeff Weiner

Jeff Weiner

I am a neuroscientist who directs a translational research program which uses humans, monkeys, and rodents to study  the neurobiological mechanisms associated with increased vulnerability to alcoholism. As an addiction researcher, I am frequently asked why we need to study this topic or why we need to use animal models in our work. I’ve often heard people say that “alcoholism is not really a disease” or that “alcoholics just lack the will to quit drinking”. Others have asked “what can we possibly learn about alcoholism by studying monkeys or rats”?   Well, there are some very good answers to these questions.

First of all, alcoholism is most definitely a disease. While it may be more difficult to diagnose than other illnesses like cancer or diabetes, there is overwhelming evidence, from human and animal studies, that excessive alcohol exposure profoundly changes the brain (and many other organ systems). We now know that alcohol-induced changes in brain activity can last for a very long time, even after the drinking behavior stops, that these neuronal alterations actually make it harder for an addict to quit, and much more likely to relapse when they finally do stop drinking. This research may help to explain why alcohol use disorders affect 5-8% of the US population at a cost to the economy in excess of 180 billion dollars and that alcohol accounts for 4% of the global burden of disease1.

Alcohol consumption USA alcoholism (2)Unlike Huntingon’s disease, alcoholism is not caused by a single gene defect. However, basic research has shown that a complex interaction between our genes and environmental factors, like chronic stress and exposure to traumatic events, can dramatically increase susceptibility to alcohol use disorders. These findings may help to explain why members of our military and their families are disproportionately affected by alcoholism.

Animal research has contributed greatly to the advancement of treatments for alcoholism. Animal models of alcohol use disorders have played an essential role in the discovery of two FDA-approved medications for the treatment of alcohol addiction (naltrexone and acamprosate). In addition, many new pharmacotherapies that have shown promise in animal models are currently being tested in human clinical trials. These new medications may prove even more effective at treating alcohol addiction.

In fact, one recent example illustrates just how powerful animal models of alcohol addiction can be. In 2008, researchers at the Scripps Research Institute in La Jolla, CA used a sophisticated rodent model of alcohol dependence (that they had spent years validating) to show that an FDA-approved anticonvulsant drug called gabapentin might be particularly effective at reducing the escalation in alcohol drinking that occurs after rats have become physically dependent on this drug2. Other researchers at Scripps quickly followed up on these exciting findings and recently completed a carefully controlled, clinical trial testing gabapentin in treatment-seeking alcoholics.   The results of this study, recently published in JAMA Psychiatry, revealed that gabapentin significantly reduced alcohol intake and dependence-associated symptoms like craving, depression, and sleep disturbances3. While much more work needs to be done to confirm these promising initial findings, these studies clearly demonstrate how effective animal models can be in our quest to discover better treatments for this devastating disorder.

It is worth noting that the vast majority of animal research on alcoholism is with rats and mice. Rodents can effectively model many elements of addiction including symptoms of tolerance, dependence, withdrawal, and relapse. Non-human primate models of alcoholism have also proven invaluable in helping to translate discoveries from rodent models to humans.

It is also worth mentioning that all animal research is regulated at multiple levels and by multiple entities. At the federal level the United States Department of Agriculture (USDA) is charged with enforcing the regulations under the Animal Welfare Act (AWA). This Act also requires that animal research be overseen and monitored by local animal care and use committees at the institutional level. Furthermore, research funded by the National Institutes of Health (NIH) must also meet standards for animal care and use as set forth by the Public Health Services (PHS) Policy.

So, while some may still question whether or not alcoholism is really a disease, it seems difficult to argue against the idea that more research is needed to address the huge medical and socio-economic costs associated with alcohol use and abuse. It also seems clear that animal models are a valuable tool that are accelerating the drug discovery process and helping to bring urgently needed treatments to the clinic.

For more information: http://www.niaaa.nih.gov/

References

  1.             Rehm J, Mathers C, Popova S, Thavorncharoensap M, Teerawattananon Y, Patra J. Global burden of disease and injury and economic cost attributable to alcohol use and alcohol-use disorders. Lancet. Jun 27 2009;373(9682):2223-2233.
  2.             Roberto M, Gilpin NW, O’Dell LE, et al. Cellular and behavioral interactions of gabapentin with alcohol dependence. J Neurosci. May 28 2008;28(22):5762-5771.
  3.             Mason BJ, Quello S, Goodell V, Shadan F, Kyle M, Begovic A. Gabapentin treatment for alcohol dependence: a randomized clinical trial. JAMA internal medicine. Jan 2014;174(1):70-77.

Pictures in need of accurate words: University of Florida animal photos

Pictures of a cat spay clinic misrepresented as a laboratory horror shop circulated the internet recently to support appeals to “end animal testing.” Speaking of Research wrote about it here “Fact into fiction: Why context matters with animal images,” noting the importance of understanding the facts and context for photographs.

This picture was used to misrepresent animal research

This picture was used to misrepresent animal research

In the cat spay clinic case, the photos were from a newspaper article. We have written previously about images of laboratory animals that have made their way to the internet via leaks, undercover operations, and open records release. In all cases, several points remain true. Images are powerful. Providing accurate information about the images is important. It is also true that there are important differences between the sources and ways that images are obtained. Those obtained via infiltrations and undercover operations may be from manipulated situations, or  small fractions of hours of recording, in both cases providing a deliberately misrepresentative view. Photos obtained from institutions via open records release can also be used to misrepresent laboratory animals’ care and treatment and can be the centerpiece in “shock” campaigns. Their value is obvious from even a quick survey of high profile attacks on research, as we’ve written about previously (here, here, here). As in the case of the spay clinic images, conflating veterinary and clinical care with scientific research is also common and further serves to confuse the issues.

Can the laboratory animal research community do a better job of providing context for images of animals?  Yes.

Knowing what the images show and why matters, particularly to people who would like to engage in serious and thoughtful consideration to inform their point of view and judgments. In absence of context and facts, the audience is left without key knowledge and an opportunity to educate is missed. Yet all too often the opportunity is missed and the images remain in public view without comment or context from those who could provide a better understanding of what the photographs show.

In reviewing laboratory animal photographs that appear on animal rights sites, it is obvious that there are generally two types: those from activities directly related to the scientific project and those related to veterinary care or housing and husbandry. In terms of providing context and information, the two differ with respect to their source and which personnel may best explain the content of the photographs.

What does the image depictSome images may be of actual scientific research activities. These may be of animals engaging in an activity directly related to the science question under study. For example, the images may illustrate how animals perform a cognitive or memory task, how they navigate a maze, or how a particular measurement is obtained. The Max Planck Institute for Biological Cybernetics website provides an example of this, with description and photographs of rhesus monkeys and cognitive neuroscience research. Another type of image directly related to the scientific project may be of a surgery or procedure. An example of this is found in pictures of a surgery involved in cat sound localization research (photos here, video here). In each case, it is not particularly challenging to provide additional information and context because the activities are typically also explained in the protocols, grants, and scientific papers about the study.

Images of clinical veterinary care, husbandry, and housing appear frequently in activist campaigns and public view. For example, pictures of routine physical examinations, health tests, unexpected injuries unrelated to scientific procedures, or photos of animals in their normal housing, have all appeared via various sources. Many times– perhaps more often than not– the activity depicted in the images would not be obvious to a lay audience because it remains unexplained.

A common image – tuberculosis skin test

One of the best examples of misunderstood images is found in pictures of an anesthetized macaque monkey with a needle injecting something in its eyelid. The picture circulates the internet with various captions opposing “animal testing.”   What does this picture show?

tb imageIt is a skin test, commonly used in human and nonhuman primates, for early detection of tuberculosis. A small amount of tuberculin (non-harmful) is injected just under the skin. In almost all cases, the primate does not have tuberculosis and the skin remains normal. If the primate—human or not—does have a reaction to the test, indicated by redness and some swelling, it provides evidence of possible tuberculosis infection. That person, or monkey, then receives additional testing and preventive measures for treatment and to avoid infecting and harming others.

Tuberculosis testing is routinely performed as a health procedure in humans who work in hospitals, schools, with children and with others who may be vulnerable. In settings where nonhuman primates are housed, tuberculosis testing is often routinely performed with all human personnel and with the other animals. Why? Because tuberculosis is a rare disease, but one that can be a threat to the animals’ health and thus, precautions are necessary to ensure their health. The difference between human and monkey tb testing is that for humans, the injection is given without pain relief or anesthesia, via a needle inserted into the forearm.

Aside from the momentary discomfort of the injection, the test is painless and without irritating after-effects. In monkeys, the injection is typically given while the animal is anesthetized and is placed just under the skin of the upper eyelid. Why the difference? It is a simple reason—the key to the test is looking for redness or slight swelling. In monkeys, the forearm is fur-covered and it would be very difficult to detect a reaction in an unobtrusive way.

University of Florida monkey pictures

Not surprisingly, the monkey tb test photo is one that seems to appear in an ongoing campaign against the University of Florida. In response to several years of attacks on their animal research programs, public universities in Florida are pursuing new action to shield personal information about their personnel from public disclosure.   We’ve written previously about an ongoing campaign of violent threats, harassment, and protest by local activists (here, here, here).

In parallel to other campaigns, photographs are a centerpiece of the current attacks on animal research. As reported by Beatrice Dupuy in the Independent Alligator:

“Disturbing pictures of primates being examined by researchers are featured on the organization’s website along with posters with quotes like “stop the holocaust inside UF, free the monkeys.” After a three year lawsuit, the organization, formerly named Negotiation is Over, obtained UF’s public veterinary records last April. The researchers named in public records were the first ones to be targeted by animal rights activists, said Janine Sikes, a UF spokeswoman.”

What are these “disturbing pictures of primates being examined by researchers”?

The photographs <warning: link to AR site> are of macaque monkeys that appear to be receiving routine veterinary care or are simply in fairly standard housing. While the activists claim these photos are evidence of maltreatment at the hands of researchers, they likely are mostly of routine veterinary procedures. For example, two appear to be of an anesthetized macaque monkey receiving a tattoo, another two of an anesthetized monkey receiving a tuberculosis test, while others show the reddened skin that rhesus macaques exhibit normally in the wild and captivity. One photo depicts what looks like a stillborn infant macaque. Without context or confirmation, it isn’t surprising that the photographs can be interpreted in many ways.

UF’s spokesperson says: “The university wants to be very open and honest about its research,” … “It wants to stop these personal attacks against our researchers.”

One place to begin is to provide straightforward and accurate context for the images of laboratory animals that have been released. While those with experience in laboratory care of nonhuman primates can view the images and be reasonably certain that they are mostly of clinical veterinary care, it is only the UF veterinary, animal care program, and scientific personnel that can provide accurate information. Other universities have done exactly that when faced with the same situation. In “An Open Letter to the Laboratory Animal Veterinary Community and Research Institution Administration”   we wrote:

“While scientists can address questions about the scientific side of animal research, we need the laboratory animal care and veterinary staff to provide their expertise in service of addressing public questions about clinical care and husbandry.  If they do not, it will be no surprise if the public view of animal research is disproportionately colored by the relatively rare adverse events and the misrepresentations of animal rights activists. Many believe that it is possible—and perhaps acceptable—to ignore this part of reality in order to focus on more immediate demands for time, energy, and resources. Consider, however, that a fundamental part of the AWA, accreditation, regulation, and professional obligation is actually to ensure communication with the public that supports animal research.  Thus, it is our entire community who share a primary obligation to engage in the dialogue that surrounds us.”

We have consistently condemned the extremists who have targeted UF scientists and others with outrageous harassment. Tactics designed to elicit fear and terror do not have a place in democratic society and do nothing to promote fair and civil dialogue about complex issues.

At the same time, we believe and have written often, that the scientific and laboratory animal community, including scientists, veterinarians, and institutional officials should consider that better education and explanation are key to building public dialogue and understanding of research. Furthermore, as highlighted in this case and others, releasing photographs, records, and other materials without providing context serves no one well. Providing straightforward explanation of the veterinary practices, housing, husbandry, and care of laboratory animals not only gives context to photographs, but also should not be that hard to do.

Allyson J. Bennett

More information and resources:

Raising the bar: What makes an effective public response in the face of animal rights campaigns:  http://speakingofresearch.com/2013/02/20/raising-the-bar-what-makes-an-effective-public-response-in-the-face-of-animal-rights-campaigns/

Time for a change in strategies? http://speakingofresearch.com/2013/06/24/time-for-a-change/

A detailed response to a PETA video accusing a primate lab of mistreatment:  http://speakingofresearch.com/2008/07/04/peta-out-with-the-new-in-with-the-old/

Speaking of Research media briefing (pdf):  Background Briefing on Animal Research in the US

To learn more about the role of animal research in advancing human and veterinary medicine, and the threat posed to this progress by the animal rights lobby, follow us on Facebook or Twitter.

I Pro-Test for Science

Please leave your messages of support including your full name in the comment section at the bottom of the page (no sign up necessary). We must show our fellow scientists that they have our support. Names in the comment section will be added to the signatures at the bottom of the post.

When researchers are harassed and intimidated for carrying out their work, we must consider the whole scientific community to be under threat. We may not always be available to stand shoulder to shoulder with our colleagues, but we can still offer our strength and support from afar.

At UCLA, the scientists and their community are standing up to end the home demonstrations that have targeted their colleagues for many years.  As Professor David Jentsch writes

For more than a decade, the streets in front of the homes of UCLA researchers have been the scene of regular, brutal, vitriolic and hate-filled campaigns by animal rights hooligans. …  We have decided to act, with our voices, our messages of scientific progress and – most importantly – with the unity of our community.

Speaking of the successful first counter-demonstration at a home protest Professor Dario Ringach writes:

… it should not come as a surprise to anyone that after a decade of harassment, intimidation and threats,  we have decided to mount counter-demonstrations when these animal right terrorists show up at our homes.

These activists now have the shameless audacity to play the victim of this encounter. Incapable of understanding the message, they are now recruiting more misguided individuals to join them in their fanatical crusade and come back to harass us at our homes on February 15th.

We will be there to meet them once more and convey one simple message,

We are not going to take it anymore!

Colleagues and friends – please take a moment to leave a message of support for the brave UCLA scientists who have been subjected to fire bombs, home harassment, threats to their children, and relentless fear-campaigns for over a decade by animal rights activists, yet continue their work to advance science.  It may be difficult to imagine what this is like, and easy to imagine is an issue that is someone else’s– one that will never be yours– but it is not. It is an attack on public interest in scientific progress, in medical progress, civil dialogue, and democratic ideals. Our community is often silent in the face of attacks. We can change that and we really must.

I am Pro-Test

For those who think that this is about animal welfare, about specific types of research, about whether or not invasive research in nonhuman animals is justified, or about some other distinction among the wide range of issues concerning captive animals, it really is not.

We ask you to please read David Jentsch and Dario Ringach’s posts (here, here, here), watch this video, and get better look at what is happening.

These are our colleagues and scientists who bravely defend their work, who engage in public dialogue, who lend their voices to serious, fact-based consideration of ethical issues. Consider whether you really believe that the actions taken by the animal rights groups represent a best path forward.  If you do not, please take a minute to comment in support of the UCLA scientists and share with others who can be there to stand with them. Even if you cannot be in LA to stand with them, you can offer a comment in support and let the public know that home harassment is the wrong path.

Please leave a comment including your full name to be added to the list below.

We should all be Pro-Test. Now it’s time to say so.

Speaking of Research

Counter-demonstration. When: February 15, 10:15am sharp!
Where: Franz Hall Lobby @ UCLA (near Hilgard and Westholme)  http://maps.ucla.edu/campus/

Signatures:

Allyson J Bennett
Tom Holder
Chris Magee
Pamela Bass
David Jentsch
Dario Ringach
Jacquie Calnan
Paul Browne
David Bienus
Andy Fell
Jim Newman
Prof Doris Doudet
Gene Rukavina
Prof Bill Yates
Christa Helms
Jeff Weiner
Justin McNulty
Alice Ra’anan
Jordana Lenon
Jae Redfern
Melissa Luck
Claudia Soi
Kevin Elliott
Brian L Ermeling
Teresa Woodger
Joanna Bryson
John Capitanio
Dennis J Foster
Juan Carlos Marvizon
António Carlos Pinto Oliveira
Dawn Abney
Michael Brunt
Wayne Patterson
Greg Frank
Jim Sackett
Davide Giana
Paulo Binda
Emiliano Broggi
Marco Onorato
Cardani Carlo
Pasquele Franzese
Diana Gordon
Janet R Schofding
Rick Lane
Lorinda Wright
Jamie Lewis
Judy Barnett
Martha Maxwell
Stacy LeBlanc
Deborah Donohue
Paula Clifford
Cindy Buckmaster
Diana Li
Ashley Weaver
Jayne Mackta
Giordana Bruno Michela
Agata Cesaretti
Enrico Migliorini
Kim Froeschl
Daniele Mangiardi
Liz Guice
Myrian Morato
Patricia Zerbini
Michael Savidge
Jefferson Childs
Kimberley Phillips
Anne Deschamps
Dario Parazzoli
Robert M. Parker
Agnes Collino
Alberto Ferrari
Igor Comunale
Kristina Nielsen
Marco Delli Zotti
Megan Wyeth
Carolina Garcia de Alba
Andrea Devigili
Erin Severs
Patricia Foley
Mary Zelinski
Alison Weiss
Savanna Chesworth
Christy Carter
Joel Ortiz
William Levick
Lauren Renner
David Andrade Carbajal
Federico Simonetti
Daniele Melani
Dwayne Godwin
Howard Winet
Jeremy Bailoo
Stephan Roeskam
Mary-Ann Griffiths
Carolyn Pelham
Francesca Digiesi
Nicola Bordin
Dianna Laurent
Joe Erwin
Jennifer Picard
Vicki Campbell
Erin Vogelsong
Bob Schrock
Silvia Armuzzi
Elizabeth Harley
Wendy Jarrett
Barbara Rechman
Daria Giovannoni
Patricia Atkins
Scott Hall
Vickie Risbrough
Liam Messin
Brian McMillen
John Meredith
Aleksandra Gondek
Tehya Johnson
Nancy Marks
Leonardo Murgiano
David Markshak
William Horn
John J Eppig
Mila Marvizon
David Robinson
Steven Lloyd
Shari Birnbaum
Matthew Jorgensen
Karen Maegley
Barry Bradford
Corinna Ross
Stephen Harvey
Deborah Otteson
Bette Cessna
Steven Wise
Michael Conn
Gregory Cote
James MacMillan
Suzanne Lavalla
Lisa Peterson
Jennifer Perkins
Richard Nyhof
Beth Laurent
Gabriele Lubach
Michele A. Basso
Cindy Chrisler
Jian Wu
Mahmoud Loghman-Adham
Claire Edwards
Daniel T. Cannon
Emil Venz
Hyeyoung Kim
Jon E. Levine
Ken Linder
Kathy Linder
Matt Thornton
Margaret Maloney
Regina Correa-Murphy
Kristine Wadosky
Victor Lavis
David Fulford
Josiane Broussard
Fabio De Maio
Rachel J. Smith, PhD
Trinka Adamson
Cobie Brinkman
Emily Slocum
Michael J. Garrison
Tom Greene
Jenny Kalishman
Marcia Putnam