Tag Archives: monkey

Harlow Dead, Bioethicists Outraged

harlow plaque jpeg (2)

The philosophy and bioethics community was rocked and in turmoil Friday when they learned that groundbreaking experimental psychologist Professor Harry Harlow had died over 30 years ago. Harlow’s iconic studies of mother and infant monkeys have endured for decades as the centerpiece of philosophical debate and animal rights campaigns.  With news of his death, philosophers worried that they would now need to turn their attention to new questions, learn about current research, and address persistent, urgent needs in public consideration of scientific research and medical progress. Scientists and advocates for a more serious contemporary public dialogue were relieved and immediately offered their assistance to help others get up to speed on current research.

To close the chapter, psychologists at the University of Wisconsin provided the following 40 year retrospective on Harlow’s work and its long-term impact (see below).

Internet reaction to the scientists’ offering was swift, fierce, and predictable.

“We will never allow Harlow to die,” said one leading philosopher, “The fact is that Harlow did studies that are controversial and we intend to continue making that fact known until science grinds to a halt and scientists admit that we should be in charge of all the laboratories and decisions about experiments. It is clear to us that we need far more talk and far less action. Research is complicated and unpredictable–all that messiness just needs to get cleaned up before research should be undertaken.”

Animal rights activists agreed, saying:

“For many decades Harlow and his monkeys have been our go-to graphics for protest signs, internet sites, and articles. It would simply be outrageously expensive and really hard to replace those now. Furthermore, Harlow’s name recognition and iconic monkey pictures are invaluable, irreplaceable, and stand by themselves. It would be a crime to confuse the picture with propaganda and gobbledygook from extremist eggheads who delusionally believe that science and animal research has changed anything.”

Others decried what they viewed as inappropriate humorous responses to the belated shock at Harlow’s passing.

“It is clear to us that scientists are truly diabolical bastards who think torturing animals is funny. Scientists shouldn’t be allowed to joke. What’s next? Telling people who suffer from disease that they should just exercise and quit eating cheeseburgers?” said a representative from a group fighting for legislation to outlaw food choice and ban healthcare for non-vegans and those with genetic predispositions for various diseases.

A journalist reporting on the controversial discovery of Harlow’s death was overheard grumbling, “But what will new generations of reporters write about? Anyway, the new research is pretty much the same as the old research, minus all the complicated biology, chemistry, and genetic stuff, so it may as well be Harlow himself doing it.”

A fringe group of philosophers derisively called the “Ivory Tower Outcasts” for their work aimed at cross-disciplinary partnerships in public engagement with contemporary ethical issues made a terse statement via a pseudonymous social media site.

“We told you so. Harlow is dead. Move on. New facts, problems require thought+action (ps- trolley software needs upgrade, man at switch quit)”

Harlow himself remained silent. For the most part, his papers, groundbreaking discoveries, and long-lasting impact on understanding people and animals remained undisturbed by the new controversy.

Statement from Psychologists:

Harlow’s career spanned 40+ years and produced breakthroughs in understanding learning, memory, cognition and behavior in monkeys1 (see Figure 1). In a time period where other animals were generally thought of as dumb machines, Harlow’s work demonstrated the opposite — that monkeys, like humans, have complex cognitive abilities and emotional attachments. Harlow and his colleagues developed now classic ways to measure cognition2,3. For example, the Wisconsin General Test Apparatus (WGTA; see Figure 1), in which monkeys uncover food beneath different types of colored toys and objects, allowed scientists to understand how monkeys learn new things, remember, and discriminate between different colors, shapes, quantities, and patterns.

The discoveries of Harlow and his colleagues in the 1930s and forward provided the foundation not only for changes in how people view other animals, but also for understanding how the brain works, how it develops, and –ultimately–how to better care for people and other animals.

Figure 1

Figure 1

In the last decade of his long career, Harlow, his wife Margaret– a developmental psychologist, and their colleagues, again rocked the scientific world with a discovery that fundamentally changed our biological understanding.3 Contrary to prevailing views in the 1950s and before, the Harlows’ studies of infant monkeys definitively demonstrated that mother-infant bonds and physical contact—not just provision of food—are fundamentally important to normal behavioral and biological development. Those studies provided an enduring empirical foundation for decades of subsequent work that shed new light on the interplay between childhood experiences, genes, and biology in shaping vulnerability, resilience, and recovery in lifespan health.

For a brief time at the very end of his career, Harlow performed a small number of studies that have served as the touchstone for philosophers, animal rights groups, and others interested in whether and how animal research should be done. The most controversial of the studies are known by their colloquial name “pit of despair” and were aimed at creating an animal model of depression. In this work, fewer than 20 monkeys were placed in extreme isolation for short periods (average of 6 weeks) following initial infant rearing in a nursery.

At the time, the late 1960s, the presence of brain chemicals had recently been identified as potentially critical players in behavior and mental illnesses like depression and schizophrenia. New understanding and treatment of the diseases was desperately needed to address the suffering of millions of people. Available treatments were crude. They included permanent institutionalization– often in abject conditions, lobotomy (removing part of the brain), malaria, insulin, or electric shock therapies. As some scientists worked to uncover the role of brain chemicals in behavior and mood, others worked to produce drugs that could alter those chemical networks to relieve their negative effects. In both cases, animal models based on similar brain chemistry and biology were needed in order to test whether new treatments were safe and effective. It was within this context that Harlow and his colleagues in psychiatry studied, in small numbers, monkeys who exhibited depressive-like behaviors.

By the 1970s and over the next decades, scientists produced medications that effectively treat diseases like schizophrenia and depression for many people. The therapies are not perfect and do not work for everyone, which is why research continues to identify additional and new treatments. Regardless, there is no question that the suffering of millions of people has been reduced, and continues to be alleviated, as a result of new medications and new understanding of the biological basis of disease.

Infant rhesus monkeys playing in nursery.  Wisconsin National Primate Research Center. @2014 University of Wisconsin Board of Regents

Infant rhesus monkeys playing in nursery. Wisconsin National Primate Research Center. @2014 University of Wisconsin Board of Regents

Looking back while moving forward

Nearly 50 years later, it is difficult to imagine the time before MRI and neuroimaging and before the many effective treatments for depression, schizophrenia and other diseases. It is perhaps even more difficult to imagine a time in which people believed that genes and biology were destiny, that other animals were automatons, or that mothers were only important because they provided food to their children. Casting an eye back to the treatment of monkeys, children, and vulnerable human populations in medical and scientific research 50 years ago, or even 30 years ago, is difficult as well. Standards for ethical consideration, protections for human and animal participants in research, and the perspectives of scientists, philosophers, and the public have all continued to change as knowledge grows. Yet, what has not changed is an enduring tension between the public’s desire for progress in understanding the world and in reducing disease and the very fact that the science required to make that progress involves difficult choices.

There are no guarantees that a specific scientific research project will succeed in producing the discoveries it seeks. Nor is there a way to know in advance how far-ranging the effect of those discoveries may be, or how they may serve as the necessary foundation for work far distant. In the case of Harlow’s work, the discoveries cast a bright light on a path that continues to advance new understanding of how the brain, genes, and experiences affect people’s health and well-being.

Mother and infant swing final

Mother and juvenile rhesus macaque at the Wisconsin National Primate Research Center. @2014 University of Wisconsin Board of Regents

 

 

 

 

 

 

 

In the 30 years since Harlow’s death, new technologies and new discoveries—including brain imaging (MRI, PET), knowledge about epigenetics (how genes are turned on and off), and pharmacotherapies—have been made, refined, and put into use in contemporary science. As a result, scientists today can answer questions that Harlow could not. They continue to do so not because the world has remained unchanged, or because they lack ethics and compassion, but because they see the urgent need posed by suffering and the possibility of addressing global health problems via scientific research.

Harlow’s legacy is a complicated one, but one worth considering beyond a simple single image because it is a legacy of knowledge that illustrates exactly how science continues to move forward from understanding built in the past. An accurate view of how science works, what it has achieved, what can and cannot be done, are all at the heart of a serious consideration of the consequences of choices about what scientific research should be done and how. Harlow and his studies may well be a touchstone to start and continue that dialogue. But it should then be one that also includes the full range of the work, its context and complexity, rather than just the easy cartoon evoked to draw the crowd and then loom with no new words.

Allyson J. Bennett, PhD

The author is a faculty member at the University of Wisconsin-Madison.  The views and ideas expressed here are her own and do not necessarily represent those of her employer.

Suomi SJ & Leroy, HA (1982) In Memoriam: Harry F. Harlow (1905-1982). American Journal of Primatology 2:319-342. (Note: contains a complete bibliography of Harlow’s published work.)

2Harlow HF & Bromer J (1938). A test-apparatus for monkeys. Psychological Record 2:434-436.

3Harlow HF (1949). The formation of learning sets. Psychological Review 56:51-65

4Harlow HF (1958). The nature of love. American Psychologist 13:673-685.

Spinal cord stimulation restores monkey’s ability to move paralysed hand

Today scientists at the Newcastle University Movement Laboratory announced that they have succeeded in restoring the ability to grasp and pull a lever with a paralysed hand using spinal cord stimulation. In a study undertaken in macaque monkeys they demonstrated for the first time that it is possible to restore voluntary movement in upper limb paralysis and tetraplegia, where there has been damage to the upper regions of the spinal cord that blocks the nerve pathways which pass messages to the muscles from the brain.

Macaque monkeys were key to Newcastle University paralysis breakthrough. Image: Understanding Animal Research

Macaque monkeys were key to Newcastle University paralysis breakthrough. Image: Understanding Animal Research

At this point some of you are probably thinking ‘Wait a minute, didn’t you just write about spinal stimulation being used to restore voluntary movement in paralysed human patients, why is this news?’ Well, it’s news because while both techniques use electrical stimulation they use it in very different ways, and will benefit paralysis patients in different ways.

In the study we discussed earlier this month Professor V. Reggie Edgerton and colleagues restored voluntary movement to the legs of 4 paraplegic men by using epidural stimulation to excite spinal nerve networks below the injury in a diffuse way. The method exploits the fact that spinal nerve networks are to some degree, “smart.” If certain sensory information is provided, for example pressure on a foot, the activated spinal cord can recognize this information and respond by generating a specific pattern of muscle activity, without requiring input from the brain. This activity can be enhanced with repetition and training, and also takes advantage of the fact that often even in spinal injuries that appear to be complete not all the nerve connections through the area of damage are broken, so once the network below the injury is activated these remaining nerve connections can be exploited to achieve conscious control over movement. However, epidural stimulation may not restore voluntary movement in spinal patients with most complete injuries, and it is not clear that the degree of voluntary control restored will be enough to allow all the patients treated so far to walk unaided.

Intraspinal microstimulation, the technique pioneered by the Newcastle University team led by Dr Andrew Jackson and Dr Jonas Zimmermann is very different. Rather than stimulating the spinal cord in a diffuse manner to increase activity in a non-specific way, it works by transmitting signals from the brain to specific spinal nerve circuits below the injury, in order to activate particular muscle groups (1). Working with macaque monkeys, they recorded the activity of individual nerve cells in the premotor cortex of the brain using a microwire array (similar to the brain machine interfaces used to control robot arms),  processed those signals in the computer, and then used the output from the computer to stimulate specific motor neuron circuits in the spinal cord via an implanted microelectrode array that in turn control the movement of the hand.

Closing the loop: By recording neural activity in the brain and then using this to generate a stimulation pattern in the spinal cord, Newcastle scientists were able to restore voluntary movement in a temporarily paralysed macaque. Image: Zimmerman, J.B. and Jackson A. Frontiers in Neuroscience (2014).

Closing the loop: By recording neural activity in the brain and then using this to generate a stimulation pattern in the spinal cord, Newcastle scientists were able to restore voluntary movement in a temporarily paralysed macaque. Image: Zimmerman, J.B. and Jackson A. Frontiers in Neuroscience (2014).

Intraspinal microstimulation does involve more invasive surgery than epidural stimulation, but opens up the possibility of new treatments within the next few years which could help stroke victims and upper spinal cord injuries to regain some movement in their arms and hands. Intraspinal microstimulation may also benefit patients whose lower spinal injuries are too complete for epidural stimulation to enable them to walk, and provide them with a much finer degree of control over movement that could mean the difference between being able to move their legs and being able to walk fluidly.

To conduct this study, published today in the journal Frontiers in Neuroscience, the team first trained macaque monkeys to grasp and pull a spring-loaded handle in order to obtain a treat such as a piece of dried fruit or yoghurt. The monkeys were then temporarily paralysed, using a drug that wore off after about two hours. During that time the monkey had no movement in their hand and was unable to grasp, even though most of the brain was functioning normally. But when the stimulation circuit was switched on the monkey was able to control its own arm and pull the handle.

This is an advance that rests on decades of basic research to understand the pathways within the nervous system and applied research to develop the technology required to restore function, undertaken by thousands of scientists around the world. The microwire array used to record single neuron activity in the brain was developed through studies in macaques by the Newcastle team in 2007, while more recently they undertook a series of studies which examined different patterns of microarray electrostimulation of motor neurons in the upper spinal cord to identify those that could restore voluntary movement.

Commenting on their research Dr Zimmermann  noted that:

“Animal studies such as ours are necessary to demonstrate the feasibility and safety of procedures before they can be tried in human patients, to minimise risk and maximise chance of successful outcomes.”

The next stage will be to further develop the technology to eventually have a small implant for use in patients that can then form the link between the brain and the muscles, and Dr Jackson is optimistic that this technology will be available to patients within a few years

“Much of the technology we used for this is already being used separately in patients today, and has been proven to work. We just needed to bring it all together.

“I think within five years we could have an implant which is ready for people. And what is exciting about this technology is that it would not just be useful for people with spinal injuries but also people who have suffered from a stroke and have impaired movement due to that. There are some technical challenges which we have to overcome, as there is with any new technology, but we are making good progress.”

It’s tempting to think of intraspinal microstimulation and epidural stimulation as competing techniques, but this would be a mistake as it very likely that both will be used, separately or together, depending on the nature of an individual patient’s injury. The greatest benefits for patients may be achieved when these neurostimulation techniques are combined with other approaches such as regenerative medicine/cell therapy and active rehabilitation. In 2012 Jackson and Zimmerman published a review of neural interfaces in restoring movement which examined the evidence from both animal and clinical studies, which highlighted a process known as Hebbian plasticity which can be summarised as “cells that fire together wire together”. Evidence is mounting that stimulation of the spinal cord below the site of injury does not only bypass lost nerve pathways or awaken dormant neural networks, but actually promotes the development of connections between nerves on each side of the damaged area to create new pathways along which signals can be passed from the brain to muscles in the arms or legs.

Today we congratulate Andrew Jackson and Jonas Zimmermann – and the Wellcome Trust who funded their work – on their outstanding accomplishment, but we also remember that it is not happening in isolation. The true importance of the therapy published today that it is part of a neuroscience-driven revolution that will in a few years time begin to transform the lives of many thousands of people with spinal injury.  We may not be there yet, but the destination is at last in sight.

Paul Browne

  1. Zimmermann J.B. and Jackson A.”Closed-loop control of spinal cord stimulation to restore hand function after paralysis” Frontiers in Neuroscience, Published Online 19 May 2014.

Addendum 21st May 2014: Interesting to note the comment by the animal rights group the BUAV that “Claiming, as do some apologists for animal research, that this news is worthwhile because the electrical stimulation in the monkeys ‘was used differently’ is desperate, and overlooks the importance of human-based studies and the contribution they have made.” which only shows that their ignorance (or willingness to lie about) this subject. The BUAV article also includes the usual outlandish claims about the monkeys used in this study being terrified, deprived of food and water etc. completely missing the point that this study required the active alert participation of the monkeys, so they needed to be relaxed and cooperative throughout it.

All surgery was accompanied by appropriate anesthesia and pain relief so that the monkeys would not suffer, and the monkeys used in this study were trained over a period of time through positive-reinforcement to gradually accustom them to the test apparatus used so that it caused them no distress. The monkey’s access to water was not limited, and their access to food in the study was only restricted for a few hours so that they were not too full to be interested in the food reward. While there is no doubt that this was an invasive procedure (just as the procedure will be for human patients) the BUAV’s comments completely misrepresented it.

To learn more about the role of animal research in advancing human and veterinary medicine, and the threat posed to this progress by the animal rights lobby, follow us on Facebook or Twitter.

 

Understanding addiction: NIDA article highlights contribution of animal research

Professor David Jentsch is a highly respected UCLA neuroscientist who specialises in the study of addiction, one of the most widespread and serious medical problems in our society today. Sadly, by devoting his career to finding out how to better treat a condition that ruins – and all too often ends – many millions of lives in the USA and around the world every year, David has found himself, his colleagues, and his friends and neighbors under attack from animal rights extremists whose tactics have ranged from harassment, stalking and intimidation, to arson and violence.

Did this extremist campaign persuade David to abandon his research?

No chance!

In 2009 David responded to the extremist campaign against him and his colleagues by helping to found Pro-Test for Science to campaign for science and against animal rights extremism at UCLA, and has been a key contributor to Speaking of Research, writing articles on the role of animal studies in the development of new therapies for addiction, what his studies on rodents and vervet monkeys involve, and how addiction research can help us to understand obesity.

Vervet monkeys involved in David Jentsch's research program live in outdoor social groups to ensure optimal welfare

Vervet monkeys involved in David Jentsch’s research program live in outdoor social groups to ensure optimal welfare

This week the NIH’s National institute on Drug Abuse (NIDA) has published an excellent article on David’s ongoing research entitled  “Methamphetamine Alters Brain Structures, Impairs Mental Flexibility”, which highlights the importance of non-human primate research in identifying how addiction alters the brain and why some individuals are more prone to develop damaging methamphetamine dependency than others. You can read the article in full here.

Human chronic methamphetamine users have been shown to differ from nonusers in the same ways that the post-exposure monkeys differed from their pre-exposure selves. The researchers’ use of monkeys as study subjects enabled them to address a question that human studies cannot: Did the drug cause those differences, or were they present before the individuals initiated use of the drug? The study results strongly suggest that the drug is significantly, if not wholly, responsible”

This knowledge of how drug use disrupts brain function will be crucial to development effective clinical interventions for methamphetamine addiction, and the huge scale and devastating impact of methamphetamine use makes it clear that such interventions are desperately needed, as David highlights in the article’s conclusion.

Methamphetamine dependence is currently a problem with no good medical treatments, when you say a disease like methamphetamine dependence is costly, it’s not just costing money, but lives, productivity, happiness, and joy. Its impact bleeds through families and society.”

At a time when animal rights activists in many countries are pushing to ban addiction research involving animals, the NIDA article on the work of David and his colleagues shows why this work is so valuable, and just what would be lost if animal rights extremists are allowed to have their way.

Speaking of Research

To learn more about the role of animal research in advancing human and veterinary medicine, and the threat posed to this progress by the animal rights lobby, follow us on Facebook or Twitter.

First human stem cells created through cloning…thank Mitalipov’s macaques!

Today is one of those days that will go down in medical and scientific history, the day that scientists at Oregon Health and Science University led by Professor Shoukhrat Mitalipov announced that they had successfully created pluripotent human stem cells by cloning  skin cells. This is the first time that this has been accomplished in human cells, and is a major milestone in the developing field of regenerative medicine. It is also an achievement that rests on over a decade of careful studies of somatic cell nuclear transfer (SCNT) – the cloning technique they used – in monkeys by Professor Mitalipov and his colleagues.

A donor egg moments after injection of the skin cell nucleus. Image courtesy OHSU photos

A donor egg moments after injection of the skin cell nucleus. Image courtesy OHSU photos

An article on the ONPRC News highlights the importance of research in monkeys to overcoming the barriers that had foiled previous attempts to clone primate cells.

The Mitalipov team’s success in reprogramming human skin cells came through a series of studies in both human and monkey cells. Previous unsuccessful attempts by several labs showed that human egg cells appear to be more fragile than eggs from other species. Therefore, known reprogramming methods stalled before stem cells were produced.

To solve this problem, the OHSU group studied various alternative approaches first developed in monkey cells and then applied to human cells. Through moving findings between monkey cells and human cells, the researchers were able to develop a successful method.

The key to this success was finding a way to prompt egg cells to stay in a state called “metaphase” during the nuclear transfer process. Metaphase is a stage in the cell’s natural division process (meiosis) when genetic material aligns in the middle of the cell before the cell divides. The research team found that chemically maintaining metaphase throughout the transfer process prevented the process from stalling and allowed the cells to develop and produce stem cells.”

While this announcement, coinciding with publication of a scientific paper reporting their work that is published in the prestigious journal Cell (1), was a surprise, the fact that the team was led by Professor Mitalipov was not. Professor Mitalipov is one of the leading experts in reproductive biology, cloning and stem cell biology, and it was only back in March that we discussed how the technique of spindle-chromosomal transfer that he developed to prevent mitochondrial disease had been approved for human trails by the UK’s Human Fertilisation and Embryology Authority.

The key publication by Professor Mitalipov and his colleagues was in 2007 (2) when they reported that they has successfully produced two rhesus macaque embryonic stem cell lines through SCNT.  In their 2010 commentary “Cloning of non-human primate: the “road less travelled by” “ Professor Mitalipov and his co-authors describe this study and  subsequent modifications that they made to the SCNT technique to further improve its efficiency in primates. Their many modifications covered changes to the way in which the nuclei of the cells were visualised and manipulated, changes in the conditions under which the donor nucleus and enucleated egg are fused, and precise regulation of the reactivation of the fused cell. One key innovation was the use of the coat protein from the Sendai (HVJ-E) virus to improve the efficiency of cell membrane fusion between the skin cell nucleus and egg cytoplasm while prolonging the activity of a protein called  maturation-promoting factor (MPF) that keeps the egg in the correct cell cycle stage to allow the introduced nucleus to integrate. Avoiding premature activation of cell division in the egg turned out to be even more difficult  in human cells. Initially the technique they had used successfully in macaques failed to yield stable stem cell lines from cloned human cells, and the problem appeared to be that the eggs were still activating too quickly following fusion, but as Professor Robin Lovell-Badge of the MRC National Institute for Medical Research explained to the Science Media Centre earlier today, they were able to make an additional tweak to their method, by adding a shot of caffeine to the mix.

The idea of using caffeine came from previous experiments they had performed with monkey eggs. Caffeine inhibits certain protein phosphatase enzymes that are involved in the degradation of “maturation promoting factor (MPF)”, a factor that is essential for controlling the cell cycle machinery in the egg.”

It is worth noting that they found that while they could produce embryonic stem cell lines using this technique, macaque embryos created using it failed to develop normally when implanted into female macaques, indicating that while this technique is viable for therapeutic cloning it cannot be used for reproductive cloning.

Professor Mitalipov discusses the first macaque stem cells produced through cloning in 2007.

The potential uses for stem cells produced through this therapeutic cloning technique are myriad; the fact that you can take a person’s own adult cells and convert then into pluripotent cells that can differentiate into any cell type makes them ideal for many transplant purposes, ranging from bioengineered replacement tissues to genetically engineered cell transplants to cure inherited disorders, and of course stem cells created from cloned adult cells from people with a wide range of diseases can be used to create a huge range of in vitro disease models to improve our understanding of the biological process at work and hasten the development of new therapies.

Of course there is already another technology that allows scientists to reprogram cells to a pluripotent state, in 2006 induced pluripotent stem (iPS) cell technology burst onto the scene and quickly became the methodology of choice for many stem cell researchers, with the first clinical trial in human patients expected to start later this year. Has human therapeutic cloning missed the boat?  In an excellent commentary in Nature News on today’s announcement David Cyranoski points out that there is evidence (from studies comparing  SCNT with iPS cells in mice) that cells produced through SCNT are more completely reprogrammed to an embryonic state than iPS cells. So, it is likely that each technique will have its advantages and disadvantages depending on the goal of the research…and in scientific research it is always a good idea to have more than one horse in the race.

We congratulate Professor Mitalipov and his colleagues at OHSU on another stunning scientific achievement, one that will advance medicine, and no doubt be read about by students for many years to come!

Speaking of Research

(1) Tachibana M. et al. “Human Embryonic Stem Cells Derived by Somatic Cell Nuclear Transfer” Cell, published online 15 May 2013 DOI:10.1016/j.cell.2013.05.006

2) Byrne J.A. et al. “Producing primate embryonic stem cells by somatic cell nuclear transfer.” Nature. 2007 Nov 22;450(7169):497-502. PubMed:18004281

Brain Awareness Week: The Role of Animals in Neuroscience

If you’re a regular reader of the Speaking of Research science blog you will know that we are very interested in neuroscience – in fact several of us are neuroscientists – so you won’t be surprised to learn that we have been following events during Brain Awareness Week (#brainweek on twitter).  Brain Awareness Week is a global campaign to increase public awareness of the progress and benefits of brain research that is organized every year by the Dana Foundation in partnership with over 100 research institutes, medical charities and universities around the world.

We thought it was a good opportunity to see what new resources on the use of animals in brain research are available from key organizations involved in Brain Awareness Week, and BrainFacts.org – a public information initiative whose launch we reported last May – delivered the goods. Brainfacts.org have been busy since we last reviewed their website, and their pages on animal research in neuroscience have grown into an excellent resource that covers a wide variety of topics including how animal research is planned, undertaken and regulated, and case studies of where animal research has made key contributions to advancing neuroscience.  Among the resources are articles written by neuroscientists and excellent videos.

The contribution of animal research to brain research has been highlighted by several recent media reports of important advances in brain science. These have ranged from a study in mice that demonstrated that high salt intake can increase the activity of a class or immune cells known as Th17 cells that have been implicated  in the early development autoimmune disorders such as Multiple Sclerosis, to a study that showed how brain implants could enable rats to sense infra red light with great potential for the development of sensory prosthetics to complement recent advances on the control of robotic limbs, to the identification in rats of a protein that plays a key role in enabling some brain cells to survive following a stroke and may lead to new therapies.

Today there was another great piece of research (1) to report as a team of stem cell researchers at UW Madison led by Professor Su-Chun Zhang  and Professor Marina Emborg chalked up another first, demonstrating for the first time that it is possible to transplant neurons generated using iPS cell techniques from a monkey’s own skin cells into their brain, where they develop into several types of mature brain cell.

GFR labelled neuron. Image courtesy of Yan Liu and Su-Chun Zhang, Waisman Center

GFR labelled neuron. Image courtesy of Yan Liu and Su-Chun Zhang, Waisman Center

The success of this study is enormously promising for the future of personalized stem cell therapies for Parkinson’s disease, stroke and other brain disorders, as the report in the University of Wisconsin Madison News makes clear.

Because the cells were derived from adult cells in each monkey’s skin, the experiment is a proof-of-principle for the concept of personalized medicine, where treatments are designed for each individual.

This neuron, created in the Su-Chun Zhang lab at the University of Wisconsin–Madison, makes dopamine, a neurotransmitter involved in normal movement. The cell originated in an induced pluripotent stem cell, which derive from adult tissues. Similar neurons survived and integrated normally after transplant into monkey brains—as a proof of principle that personalized medicine may one day treat Parkinson’s disease.

And since the skin cells were not “foreign” tissue, there were no signs of immune rejection — potentially a major problem with cell transplants. “When you look at the brain, you cannot tell that it is a graft,” says senior author Su-Chun Zhang, a professor of neuroscience at the University of Wisconsin-Madison. “Structurally the host brain looks like a normal brain; the graft can only be seen under the fluorescent microscope.”

Rhesus macaques play a key role in brain research...

Rhesus macaques play a key role in brain research…

It’s interesting to note that the development of green fluorescent protein (GFP) labelling that played a crucial role in allowing Profs. Zhang and Emborg’s team to distinguish transplanted cells from host cells in the monkey brain was made possible by research in the nematode worm Caenorhabditis elegans , a tiny worm that itself plays a perhaps surprisingly important role neuroscience.

...as do nematode worms!

…as do nematode worms!

These discoveries and advances impact on many areas of brain research, and have the potential to benefit those suffering from a wide variety of brain diseases and injuries, so it is fitting that in Brain Awareness week we salute the researchers whose ingenuity and hard work makes them possible.

Speaking of Research

1) Marina E. Emborg, Yan Liu, Jiajie Xi, Xiaoqing Zhang, Yingnan Yin, Jianfeng Lu, Valerie Joers, Christine Swanson, James E. Holden, Su-Chun Zhang “Induced Pluripotent Stem Cell-Derived Neural Cells Survive and Mature in the Nonhuman Primate Brain” Cell Reports, Published online 14 March 2013, DOI: 10.1016/j.celrep.2013.02.016

Safeguarding medical progress means supporting animal transport

The following guest post is from Eric Raemdonck, who has a background in the aviation transport industry. Eric recently launched the Advancing Animal Research blog, whose purpose is to ” establish bridges between the aviation world, the life sciences, health care, pharmaceutical, animal research industries,  educational institutions and their  affiliate or representative associations as well as Governmental organisations”.

Facing a virulent campaign by animal rights activists, a growing number of airlines around the world now refuse to transport certain species of research animals, chiefly non-human primates (NHPs).  This worrisome development not only threatens medical progress, but also puts the health and welfare of those animals at risk.

Animal rights extremists are trying to put a chokehold on the airline industry’s service to biomedical research via social media write-in campaigns, demonstrations at airline offices around the world, and even protests at the homes of airline executives.

Everyone concerned with the future of biomedical research must actively reject these tactics of intimidation and harassment, and stand in support of those airlines that continue to transport animals safely, comfortably and quickly to where they are needed to advance the quest for treatments and cures.

As a former secretary of the International Air Transportation Association’s Live Animals and Perishables Board, I can attest that airlines that transport animals employ highly skilled specialists and focus on finding the quickest routes possible to ensure the health of the animals en route to research institutions.

Animal research remains a small but vital component of the research and development process for new medicines.  Without the ability to move research models from one country to another, or from breeder to research institution, crucial scientific research seeking new treatments for heart disease, cancer, spinal cord injuries, epilepsy and numerous other ills could come to a halt.

As things stand, almost every commercial airline in the world, save but a handful, now refuses to transport non-human primates for research, even though many have policies in place allowing for the transport of NHPs for other purposes.

The United Kingdom has perhaps the most stringent laws and oversight on the use of animals in research, yet no U.K.-based air carrier is willing to transport NHPs destined for research into the country.  In the United States,  very few commercial carriers remain to do the job.  Airlines of other nations, upon which research institutions are increasingly relying for their animal transportation needs, are also feeling the pressure from activists and some have already given way to demands that they no longer carry laboratory animals.

Why is this happening?  Why are airlines targets?

As research institutions themselves become increasingly adept at blunting the impact of activists’ campaigns, leaders in the animal rights movement are now looking toward those companies with whom the research community works or relies upon for services.  ‘Stop research animal transportation and you stop animal research’ is the thinking behind the actions of animal rights extremists in targeting airlines.

Animal extremist campaigns against the airlines, such as the British Union for the Abolition of Vivisection’s Primate Cargo Cruelty and various Internet petitions attract thousands of signatures.   PETA also has an action alert on its web site, calling on readers to “Ask Airlines to Stop Shipping Monkeys to Be Tortured.”

Social media tools such as Facebook, YouTube and Twitter are used extensively in these campaigns to solicit support, donations, and calls for immediate action to change airline policy to include a ‘no-fly’ regulation for research animals.

The message to their followers is clear: only a few airlines remain, and by working together activists can put a stop to this practice.  The message to the airlines is equally clear: change your transportation policy or we will tell the public to no longer fly with you.  Through email campaigns alone,  some lasting only a few hours, several airlines have made the decision to stop transporting research animals.  This was done without any consultation with the companies involved and without  any notice.  This has occurred while airlines continue to transport animals for other industries and passengers.

Straightforward security steps taken by airlines and research institutions alike can blunt the impact of many of the activists’ campaign tactics, and protect the airlines and others involved in the global supply chain. Additionally, there are steps that concerned individuals may take to help ensure that safe and humane transport of laboratory animals will continue.

1/Stand by the airline industry and voice your support through associations such as AALAS – American Association for Laboratory Animal Science (www.aalas.org),   CALAS—Canadian Association for Laboratory Animal Science (www.calas-acsal.org) ICLAS – International Council for Laboratory Animal Science (www.iclas.org) and other scientific and professional organizations that advocate for both biomedical research and laboratory animal welfare.  Ensure that the issue of protecting humane research animal transportation is on their agendas.

2/Ensure that your elected officials appreciate the importance of animal research, and ask them to look into the problem of the declining pool of available airlines for the continued transport of research animals.

3/Inform others as to the humane and judicious nature of animal research, and why it is still needed.  Underscore its achievements and the medical progress to which it has contributed.  Information and links to resources to get you started are here on the Speaking of Research site, and on my Advancing Animal Research blog at http://research4drugdiscovery.blogspot.ca/

Eric Raemdonck

Bridging the gap: Monkey studies shed light on nature, nurture, and how experiences get under the skin

“Is it nature or nurture?”

“How does that work? How can social experiences actually change someone’s brain?”

“So early experiences matter, but how much?  Is it reversible? How long does it last? Is there a way to change the course?”

All of these are popular questions that I hear from students, community members, clinicians, and other scientists when I talk about my research with monkeys.  The nature vs. nurture question is one of high public interest.  It is one that is at the center of our understanding of who we are and how we come to be that way.  And it is a very old question.  Yet it is also one that continues to resonate and become even more intriguing as new discoveries rapidly change what we know about biology and genes, and illuminate with increasing specificity the ways in which nature and nurture together play dynamic roles in shaping the development of each individual.

For example, through research with humans, monkeys, rats, mice and other animals, we know that genes are not only involved in differences between individuals’ behavior, health, and biology, but also that an individual’s social environment and childhood experiences can actually change how genes behave and, in turn, have biological consequences.  In other words, those previous gray areas surrounding exactly how nature and nurture work together are now being filled in with a more specific understanding.

Why does this matter? There are many important reasons. Among them, it is this specific information that allows us to develop better prevention, intervention, and treatment strategies for those negative health outcomes that follow adverse experiences. One example of this can be found in our rapidly advancing knowledge of how brain neurochemistry, which plays a major role in mental health disorders, is affected both by genetic differences between individuals and also by early life experiences. This knowledge provides not only the basis for developing treatments that target the specific neurochemicals involved in a disorder, but also provides important clues for early identification and intervention for those at risk. At the same time, understanding that experiences have long-lasting consequences on biological pathways involved in lifetime health underscores the importance of public policies that work to promote better early environments.

I am one of the many scientists who are devoted to work aimed at better understanding how many different kinds of early experiences can influence a wide range of health outcomes during an individual’s lifespan. My own part of this work primarily includes non-invasive studies with monkeys and focuses on developmental questions about behavior, aspects of brain chemistry and development, and genetics. For example, I use neuroimaging (MRI) to look at how brain development can be affected by early life experiences and we have monkeys play videogames, solve puzzles, and respond to mild challenges so that we can better understand their learning, memory, cognition, and temperament.

Part of my work involves studying how middle-aged monkeys (15+ years old) who were raised in infancy with their mothers differ from monkeys nursery-reared in infancy with their peers. The two groups have the same experiences following the early life period, and during infancy and throughout their lives, both groups are housed in enriched environments with excellent diets, toys, and medical care. Although my current work is focused on a small number of nursery-reared animals, it does not involve creating new animals or a nursery. It depends on healthy animals who have been part of our work for many years and, as with all of our studies, we treat these animals humanely, with careful attention to providing them with healthy diets, environmental enrichment (e.g., a variety of toys, puzzles, fresh fruit and vegetables, and foraging opportunities), and excellent clinical care by veterinarians.  We do this because we care about the animals’ well-being and also because our studies depend upon healthy animals.

Adult rhesus macaque

There are less than a handful of studies concerned with how monkeys’ early rearing influences their behavior and other aspects of health in middle- and older-age. As a result, although we have a strong platform of knowledge about the effects of early life experience in younger animals, we know very little about whether these effects persist into older age, about what systems are affected, and the degree to which individuals vary.

This study, like those of others who study the effect of different early life experiences on a range of health outcomes, is aimed at uncovering the biological basis of a key finding relevant to human health. We know from human studies that a wide range of early experiences, including not only childhood neglect and abuse, but also poverty and other types of adversity, are associated with negative health outcomes later in life. In humans, however, it is impossible to truly disentangle the effects of early adverse life experiences from differences in diet, environment, access to medical care, and other factors that vary across the lifespan. Animal studies allow us to control many of the factors that vary widely in humans and have consequences on health. For example, animals with different early experiences have the same environment and experiences afterwards, including healthy diets and excellent medical care. As a result, when we find significant differences in behavior, brain chemistry, brain structure, and immunology between animals with different early experiences we know that these differences are not due to disparity later in life.

Early experiences do not tell the whole story, however, as we know from the common observation that two individuals who experience the same early environment or challenging experiences, may wind up with very different health pathways.  Part of the obvious reason for this is genetic variation. Understanding how differences in genes contribute, however, and which biological pathways are affected or how permanent those effects may be, are now the real questions that remain to be fully answered. Animal studies provide one of the critical ways to view the interplay and roles of genes, environments, and experiences. This is because, unlike in human studies, animal studies can make use of strong experimental control and mechanistic approaches in order to compare the biological and behavioral responses of individuals who have similar genes and different environments, or individuals with different genes in the same environment.

Another part of my research involves studying how genes affect an individual’s response to the environment and how that occurs at a biological level.  The kinds of questions that we address include:  When two individuals experience the same stress, or the same environment, why are some relatively unaffected (resilient) and others more vulnerable?  What genes play a role in this difference?  What biological systems?  My work, along with that of my colleagues, has demonstrated that genetic factors play a crucial role in how individuals differ in terms of their resilience or vulnerability to early adversity. It is through studies with monkeys that my colleagues and I were able to first identify how interplay between specific genetic variation and early experiences together influence brain chemistry that influences a wide range of behaviors and aspects of health.  This finding in monkeys preceded and spurred subsequent similar studies in humans that continue to show that for most complex traits, genes do not always predict an individual’s destiny; environments have tremendous influence; and understanding individual differences requires consideration of both nature and nurture. As a result, we not only now know more about the genetic and biological underpinnings of individual differences in vulnerability to early life stress, but we also can move forward in identifying the specific ways that this occurs.

In all of these studies, our goal is to produce new understanding about how early experiences affect individuals throughout their lives.  Furthermore, like other biomedical animal research, our goal is to produce information that is relevant to human health and to address questions that are raised by challenges to human health but that cannot be addressed in studies of humans. In other words, aspects of similarity between human and nonhuman primate genetics and biological response to experiences are central to the rationale and success of the research. Studies with monkeys are a small, but important, part of the research aimed at uncovering how early experiences affect health.  As with most areas of research, new understanding and progress depend upon bridges between studies that use different populations (both human and other animal) and that draw from many different areas of expertise. Work in this area has progressed through the efforts of psychologists, neuroscientists, behaviorists, geneticists, molecular biologists, immunologists, physicians, population epidemiologists, sociologists, and others. In other words, the question is of interest from many perspectives and is addressed with interdisciplinary approaches that make it possible to build connections between findings so that the results of basic research can provide useful evidence to inform better health practices, clinical care, and public policy.

Why are these studies and findings important?  In short, because they provide us with a way to better understand the specific biological mechanisms by which early life events affect health.  As a result of decades of research in both humans and other animals, we know some of the specific biological, neural, immunological, and genetic pathways that are affected. These studies have informed progress in our understanding of the importance of early childhood experiences for lifelong health, the biological basis of mental health disorders, and the potential to change health trajectories through early identification of risk and appreciation of individual differences. Through the combined force of basic and clinical studies, we will continue to progress in understanding how genes, experiences, and biology interact. In turn, this understanding will continue to help in pinpointing mechanistic targets and shedding new light on those avenues for prevention, intervention, and treatment that improve human and animal health.

Allyson J. Bennett, Ph.D.