Tag Archives: primate research

Dangerous and Irresponsible: PETA attempts to intimidate NIH Director Francis Collins

PETA campaigns are rarely benign, from misrepresenting science to glorifying violence against women and scientists. Their latest campaign, reported yesterday by Science Insider, is no different. PETA have sent hundreds of letters to the neighbors of both NIH Director, Francis Collins, and world renowned researcher, Dr. Stephen J. Suomi, as part of a long running campaign against Dr Suomi’s NIH-funded research into the behavioral and biological development of non-human primates.


These letters, condemning Dr Suomi’s research, are full of inaccuracies. His work has been defended by several large scientific organisations. When PETA first launched their campaign against Dr Suomi earlier this year the American Psychological Association wrote:

We believe that the facts do not support PETA’s public statements about this research. Over the past three decades, Dr. Suomi and his collaborators have made significant contributions to the understanding of human and nonhuman animal health and behavior. Dr. Suomi’s work has been critical in understanding how the interactions between genes and the physical and social environments affect individual development, which in turn has enhanced our understanding of and treatments for mental illnesses such as depression, addiction, and autism.

The American Society of Primatologists statement noted:

The American Society of Primatologists supports research on non-human primates that is carefully designed and employs rigorous research protocols. Dr. Suomi’s research and consistent funding by the NIH attests to his adherence to prescribed protocols and regulations.

While the NIH’s own very robust statement, which it issued this January following a review of Dr Suomi’s research programme sparked by PETA’s complaint, concluded that it:

has achieved world class, enduring contributions to our understanding of the developmental, genetic, and environmental origins of risk and vulnerability in early life,” and “could be a truly remarkable point of departure for a unified theory describing the biological embedding of early social conditions and their developmental consequences.

Yet the letters are more than just another incident of misrepresented research. They are irresponsible and dangerous. By posting Dr Collins’ and Dr Suomi’s addresses, alongside a misleading picture of the NIH research, they have potentially given animal rights extremists the necessary information to carry out extremist actions. We have seen similar address releases in past result in terrifying home demonstrations as well as acts of vandalism and worse.

PETA have been involved in animal rights activism for decades and should be well aware of the potential risks – this whole strategy comes down to the harassment of scientists and their families to scare them from conducting important biomedical research. Indeed, a statement by PETA’s Alka Chandna to Science Insider that “If I had a neighbor who was doing this, I would want to know about it…It’s similar to having a sexual predator in your neighborhood.” suggests that harassment and intimidation is exactly what PETA have in mind. It becomes all the more sinister when you remember PETA’s record in glorifying and encouraging violence, and supporting violent animal rights extremists.

As Speaking of Research member Prof. David Jentsch noted in his comments to Science Insider:

PETA’s arguments about the value of the science fails on its merits, so they resort to these deeply personal attacks. We’re seeing more of these types of tactics across the animal rights movement. They’re essentially saying to scientists, ‘We know where you live.’

Is this what PETA want?

Is this what PETA want?

So will PETA’s approach succeed? The fact is that very few of the scientists targeted by PETA or other animal rights extremists have ever given up their research, and for some – and David Jentsch himself is a good example – being targeted has prompted them to become vocal advocates for animal research, which one suspects is not the result the animal rights groups intended.

It’s also worth noting that on previous occasions where animal rights extremists have targeted the neighbors of scientists on this way, they have responded with displays of support for the scientist and their family. We expect that this time will be no different (especially as PETA are hardly the most trusted of organizations).

It seems unlikely that Collins will be cowed by PETA’s tactics, after all as a researcher who has spoken up in favour of human embryonic stem cell research when it was under threat, and who as NIH Director frequently has to deal the demands of wilfully ignorant and frequently obnoxious politicians, he has probably developed quite a thick skin.

Indeed, during a discussion of the NIH’s flagship BRAIN Initiative at the Society for Neuroscience meeting last month Collins was asked directly about non-human primate research, and responded by acknowledging the need for non-human primate research in the BRAIN Initiative and the need for continued outreach to the public on the importance of animals in advancing biomedical research.

Some commentators have suggested a connection between the PETA campaign and yesterday’s announcement by the NIH that it has decided to retire all its remaining research chimpanzees. While some may be tempted to think this, it seems unlikely to be the case. As several researchers noted in the Nature News article reporting the NIH decision, there are still some question marks over the NIH’s decision. In particular how the NIH will ensure that the conditions in which the chimps are retired to meet the high welfare standards of current NIH facilities, and how it will affect valuable non-invasive neurocognitive, genomic, and behavioural research that most sanctuaries do not have the facilities to support, is still far from clear.

However, it is also readily apparent that this decision was driven by the fast decreasing use of chimps in biomedical research over the past 5 years, and in particular the US Fish and Wildlife Service’s recent decision to give research chimps endangered species protection, which prevents any invasive biomedical research that doesn’t benefit wild chimpanzee populations, a ruling that arguably made supporting even a small research chimp colony unviable for the NIH. PETA’s most recent harassment campaign is unlikely to have had much – if any – affect on the NIH’s decision making.

Francis Collins

The situation is very different for other non-human primate species, which continue to play a crucial role in many areas of NIH-funded research. Francis Collins himself noted this  in the official statement on the decision to no longer support chimpanzee research, when he concluded by writing:

These decisions are specific to chimpanzees. Research with other non-human primates will continue to be valued, supported, and conducted by the NIH.

Speaking of Research applauds Francis Collins’ continued support for non-human primate research, and his refusal to concede to PETA’s attempts to bully him into a decision that would do serious damage to the NIH’s status a world leader in biomedical research, and indeed to progress against a wide range of devastating diseases.

Speaking of Research condemns the efforts of PETA to stand in the way of medical research that can change lives. Almost 20% of the US suffered from mental health illnesses in the past year. The research community is morally obligated to do what it can to help understand and treat these devastating conditions. We also condemn a PETA tactic that risks exposing researchers to acts of violent extremism that PETA claim not to support.

We hope Francis Collins and the NIH will not bow to pressure, but will continue to stand up in defense of the research community and the importance of biomedical research.

Speaking of Research

German Outreach Done Right

The German Primate Center (DPZ) have been producing some excellent resources to show how their primates are housed. This sort of outreach goes a long way to helping understand the lengths that institutions will go to ensure that high standards of animal welfare are maintained for their primates.

The first resource is an interactive tour of the DPZ facility. The website allows users to se pictures of the facility, and discover key information about the site. There are approximately 1300 primates currently kept at the facility, 75% of which are either rhesus macaques or common marmosets – both common research animals.

It isn’t just information about the animals which is provided. The tour explains why staff and visitors must change their shoes as they walk around the facility, and how clothes are decontaminated between areas. While such practices are very normal for researchers and animal care staff, they can seem quite alien, and even intimidating, for those who are less used to the laboratory environment. The tour answers questions about how often cages are cleaned (daily), how sunlight is regulated, what sort of enrichment exists, and much more.

Animal research facility at DPZ

The breakout boxes provide more information about aspects of animal welfare, facility management and the animals themselves.

How does the environment influence animal behaviour

The captive environment should allow and encourage natural behavior as shown by the species in the wild. This can be behaviors and postures like leaping, climbing, hanging upside-down, and running as well as clinging or jumping. The artificial environment should also allow all social behaviors like grooming, playing, huddling or the display of dominance, which is very important to all primate societies.

DPZ have also produced a video (in English) showing the work being done at their Cognitive Neuroscience Laboratory. The video looks at research which aims to understand the filtering process (selective attention) in brain processing – “what are its consequences, what is its neural basis, and what happens if there is a malfunction in that system”. It includes both the human and primate research.

The video is fantastic, showing how the primates are treated in studies at DPZ. This sort of outreach is important to help the public understand what primate research actually looks like.

Speaking of Research congratulate DPZ for these fantastic outreach tools.

Interview with a Primate Researcher

In the last few months, Italian animal rights activists have conducted a campaign against animal research, in particular against primate research. This is despite the important role that primates have played in breakthroughs in stem cell research and neuroprosthetics, among other things. Nonetheless, activists continue to try to claim such research is useless. In particular, they targeted Prof. Roberto Caminiti, a leading neurophysiologist at the University La Sapienza in Rome, and his research team, accusing them of animal mistreatment. Earlier this year students and scientists at the University rallied round Prof. Roberto Caminiti, his team, and his important research.
To answer some of the activists accusations, Pro-Test Italia has produced a video with Prof. Caminiti to illustrate why primate research is so important in the field of neurophysiology and brain-computer interface, and why animal models remain essential for this kind of research. Pro-Test Italia have also made an English version of the video:

It’s important to spread this video outside of Italy to both explain to the public what is going on, and to encourage other primate researchers not to remain hidden but to be clear about the important research that they do. Researchers should be proud of the important work they do in contributing to medical developments for everyone.


American Psychological Association supports NIH primate researcher Stephen J. Suomi

Research conducted within the National Institutes of Health (NIH) intramural program has been the focus of a PETA campaign over the past several months. Elements of the campaign mirror tactics PETA has used elsewhere to generate media coverage, fundraising, and emails or phone calls to the NIH. The campaign recently reached beyond newspaper, bus, and metro advertisements to include a congressional request to NIH to provide a review of the research.

The American Psychological Association (APA) responded on January 22 with strong statement of support for the scientist and research under attack by PETA.

APA 01.22.15

APA’s letter to the congress members, in its entirety, reads:

“In December 2014 you were one of four members of Congress who sent a letter to Dr. Francis Collins, Director of the National Institutes of Health (NIH), requesting that his office commission a bioethics review of a research program directed by the world renowned researcher, Dr. Stephen J. Suomi. On behalf of the American Psychological Association and its Committee on Animal Research and Ethics, I am writing to provide a broader scientific perspective on this research. As you are likely aware, the request you received was a part of a sustained and well publicized campaign against Dr. Suomi’s laboratory by the organization, People for the Ethical Treatment of Animals (PETA), in support of its mission to put an end to research with nonhuman animals.

Your letter stated that prominent experts have raised concerns about the scientific and ethical justification for these experiments. We believe that the facts do not support PETA’s public statements about this research. Over the past three decades, Dr. Suomi and his collaborators have made significant contributions to the understanding of human and nonhuman animal health and behavior. Dr. Suomi’s work has been critical in understanding how the interactions between genes and the physical and social environments affect individual development, which in turn has enhanced our understanding of and treatments for mental illnesses such as depression, addiction, and autism.

Dr. Suomi and colleagues found that like humans, monkeys share similar variants of genes that make an individual more vulnerable to mood and personality disorders; however, genetics interact with experience in determining such disorders, and mother-infant dynamics in particular have a large influence on later development. Dr. Suomi has successfully produced monkey models of depression and excessive alcohol consumption and his studies provide insight into modes of treatment. Through his work on neonatal imitation, Dr. Suomi discovered potential early signs of atypical social development in monkeys, which has informed the search for screening methods and treatments for autism in human children. Further, through his work on the development of attachment behavior to a caregiver, which is crucial for infant survival in both humans and other animals, Dr. Suomi’s research has had a tremendous impact on the standards for the welfare of nonhuman animals in captivity.

Cover PNAS monkey pic 2

The specific study targeted by PETA was designed to investigate the long-term effects of fluoxetine (Prozac) in children. Given that drugs are typically tested only on adults, the effects of this commonly prescribed anti-depressant on children were unknown. Thus, in response to overwhelming concern raised by parents, physicians, and others involved in child and adolescent health about the safety of this medication for children, Dr. Suomi and his colleagues began a study with baby monkeys to elucidate the effects of fluoxetine in children. Contrary to PETA’s repeated claims that animal research has not improved human health and that modern non-animal research methods are more effective, there are, in fact, no viable non-animal alternatives for identifying the causes of and treatments for disorders that affect the brain and behavior. Studies with a wide variety of nonhuman animal species have been and continue to be integral to basic and applied research on health.

Laboratory animal models generally provide the most scientifically rigorous means of studying normal and abnormal behaviors in order to better understand their underlying mechanisms and to remedy disorders. Monkeys are the ideal model for the work that Dr. Suomi does, because they share approximately 93% of human DNA, they live in social groups with similar mother-infant dynamics as humans, and they develop more quickly than humans. Moreover, the monkeys in Dr. Suomi’s studies are treated humanely, following strict guidelines set forth by the Animal Welfare Act and overseen by numerous entities including the NIH Office for Laboratory Animal Welfare (OLAW), the United States Department of Agriculture (USDA), the Association for the Assessment and Accreditation of Laboratory Animal Care, International (AAALAC), and institutional animal care and use committees. And given that Dr. Suomi is an intramural researcher at NIH, you can be certain that his research animals receive premier quality of care.

I understand that it may sometimes be difficult to weigh the qualifications and varying conclusions of “dueling experts,” but let me assure you that Dr. Suomi is a highly regarded member of the APA and the psychological science community at large, as well as a highly sought-after expert in the field of pediatric medicine. In addition to providing information to the U.S. Congress, Dr. Suomi has testified at the World Health Organization and addressed the British House of Commons about the implications of his scientific findings.

Based on the conviction that research with nonhuman animals is a necessary component of basic and applied research on health, APA strongly supports humanely conducted, ethically sound, and scientifically valid research with nonhuman animals. For nearly 100 years, through its Committee on Animal Research and Ethics, APA has promoted informed, serious, and civil dialogue about the role of nonhuman animal research in science. If you should be asked to take further action against Dr. Suomi, I hope you will make it a point to seek out additional information before making a decision. My staff stand ready to provide you with additional information, including assembling experts for a staff briefing or assisting you in any other way on this issue.”


The complete statement can be found here:  APA Suomi-letter 01.22.15


Animal research: Why are we still using monkeys?

A common argument from animal rights organizations is that animal models cannot tell us anything useful about human medicine, that animal research is outdated, and should be replaced with other methods. But in a recent article, a group of leading scientists argues that “Primate models still matter” — with the right attention to the animals’ social needs and welfare.

The mantra of “Replace, Reduce, Refine” is a common place in the animal research community — with an emphasis on replacing animal models where possible. Yet while most research with vertebrates involves rodents and fish, non-human primates (principally rhesus monkeys) remain a vital model for studying many diseases and conditions. A recent article in the American Journal of Primatology sets out the issues around research with non-human primates.

Research involving nonhuman primates (NHPs) has played a vital role in many of the medical and scientific advances of the past century. NHPs are used because of their similarity to humans in physiology, neuroanatomy, reproduction, development, cognition, and social complexity-yet it is these very similarities that make the use of NHPs in biomedical research a considered decision. As primate researchers, we feel an obligation and responsibility to present the facts concerning why primates are used in various areas of biomedical research. Recent decisions in the United States, including the phasing out of chimpanzees in research by the National Institutes of Health and the pending closure of the New England Primate Research Center, illustrate to us the critical importance of conveying why continued research with primates is needed. Here, we review key areas in biomedicine where primate models have been, and continue to be, essential for advancing fundamental knowledge in biomedical and biological research

Kimberley Phillips of Trinity University, San Antonio, Texas and co-authors discuss how non-human primate models are ideal for studying heart and respiratory disease; reproduction and pharmacology; immunology and infectious disease, including vaccines and treatments for HIV/AIDS; behavior, cognition and neuroscience, among many other topics.

primate monkey animal testing

Image Credit: CNPRC/Speaking of Research

Primate and monkey models have contributed to the fight against polio, typhoid and yellow fever, and have made possible advances in treating heart disease, AIDS, cancer, diabetes, asthma, and malaria. Efforts are under way to develop treatments for emerging diseases such as Ebola and avian influenza, and conditions that becoming more common, for example Parkinson’s disease, Alzheimer’s, obesity, arthritis, infertility, and aging.

Nonhuman primates provide unique opportunities for scientists and physicians to study human disease, because while we have important differences, their biology is similar to ours in many ways. Yet this similarity also raises ethical issues, especially with the great apes, according to Phillips et al.

The recent decision by the National Institutes of Health to end support for some forms of invasive biomedical research with chimpanzees reflects the development, by scientists, of alternative models for some types of research as well as reflecting a collective desire to involve chimpanzees only in research that is either noninvasive or otherwise essential to scientific progress.

The use of these animals in research must be carefully considered and conducted in a controlled and thoughtful manner, the authors write. They advocate standards of care that consider not just food, housing and veterinary care, but pay attention to the animals’ cognitive, social and psychological needs.

“Efforts are now made to enhance psychological well‐ being through social housing, addressing the specific social and development needs of infants and aged individuals, and providing environmental enrichment,” they write.

“We are at a critical crossroads in our society and unless NHP research is given the philosophical, emotional, and financial support and infrastructure that is needed to sustain it and grow, we are in danger of losing irreplaceable unique models and thus, our ability to continue to explore and understand, and develop preventions and treatments for numerous conditions that inflict great suffering on humans.”

Andy Fell

To learn more about the role of animal research in advancing human and veterinary medicine, and the threat posed to this progress by the animal rights lobby, follow us on Facebook or Twitter.

Not Difficult To Grasp

Paralysis can have tremendous negative consequences for a person’s quality of life.  In the US alone, there are more than 200 thousand people living with chronic spinal cord injury, which is a cause of immense suffering to them and their families.  The disease generates economic burden for society as well.   Thus, there has been a lot of interest in using our knowledge of how movement is coded in the brain to allow patients to bypass nerve injuries and communicate directly with the environment.  Moreover, when asked about their priorities in terms of regaining motor function the vast majority of patients rank regaining arm and hand function as most important.

It is thus encouraging to read in Nature today an update on how these efforts by scientists have allowed a paralyzed patient to reach for a cup, bring it to her lips, and drink from it.

Critical milestones in the development of motor prosthesis for paralyzed patients

As explained in a nice News and Views piece by Andrew Jackson that accompanies the article, this type of work builds on decades of previous research on the neural mechanisms that control arm movements (here, here and here) (blue on the Fig above), on the development of chronic multi-electrode arrays (orange), their recording properties in animals, and on feasibility studies of neural interfaces in monkeys (here, here, here and here) (green), which opened the way to clinical studies in humans (here and here) (purple).

The value of animal research should not be difficult to grasp. The knowledge that allows us to “read out” the planned movements of the patient from different brain regions in order to guide the movement of the robot is critical in the design of the system.  And it is an indisputable fact that such knowledge has been (and continues to be) obtained by experiments in awake, behaving monkeys.

And for those that doubt the true motivation of scientists for doing their work, it is worth noting what Dr. Leigh Hochberg (one of the leading authors of the study) had to say about their results — “The smile on her face … was just a wonderful thing to see.”   Do you want to see her smile too?  Watch this:

Of course the BrainGate system used by Dr. Hochberg and Dr. John Donoghue – director of the Institute for Brain Science at Brown University – is not the only brain-machine interface system under development to restore function in paralysis. In 2008 we wrote about a similar brain implant developed by Dr. Andy Schwartz at the University of Pittsburgh which enabled monkeys to manipulate robotic hands with unprecedented dexterity. Last year we wrote about how Dr. Schwartz’s team had used a different technology known as electrocorticography to enable a paralysed man to manipulate a robotic arm, while Dr. Chet Moritz and colleagues at Wachington National Primate Research Centre, have coupled readings from individual nerve cells to a technology called functional electrical stimulation to restore control to temporarily paralysed muscles in monkeys, an approach that may eventually supersede the use of robotic arms in some patients. It will be fascinating to watch this technology progress into more widespread clinical use over the next decade, and thrilling to think that, impressive as it appears today, we have barely begun to tap the potential of brain-machine interface technology to change lives.

Part 2: University of Toronto ends live primate research – Outsourcing Controversy

 Earlier this week we wrote about the University of Toronto’s public statements concerning the end of their on-site primate research. A number of broader questions were raised by considering similar cases and articles.  Among them, what does it mean for a university to claim that it does not engage in a particular type of research?  In the case of the University of Toronto, the same article announcing the end of their primate research indicated that Univesity of Toronto researchers will continue primate studies at other institutions. 

Although this seems like a small point that concerns only a single animal research program, it is illustrative of larger questions and issues that deserve more thoughtful consideration.  One is what it means to say that a researcher, institution, or nation does or does not conduct a particular type of research. It is not at all obvious, and thus is an easy thing to manipulate in public presentation. For example, ask the following questions:

  1. Does that mean only that they do not house animals and conduct studies, or do not conduct that work independently on their own campus or within their own borders?
  2. Or does it mean that they not only do not conduct the work, but also do not support the work in any way, with collaborative effort, resources, or their approval? 
  3. Or does it mean that they not only do not conduct the work, but also do not support the work and would refuse any benefit arising from the work?

It is not only the University of Toronto ending its housing of monkeys and instead relying on collaborative opportunities in the U.S.that raises these questions. The point is also well illustrated in considering whether Canada and other countries are, or are not, involved in biomedical research with chimpanzees. One of the frequently raised points used to argue against ape research is that biomedical research with chimpanzees is conducted in only two countries — the U.S. and Gabon.  But what does that mean? And is that really true?

In fact, a recent CTV news show highlighted the fact that studies for Canadians are performed at a U.S. chimpanzee research facility funded largely by a federal grant to maintain national research resources in the U.S.  The fact that Canadians are involved in chimpanzee research is not hidden in any way, but is easy to misconstrue.

In Canada, there’s no outright ban, but no one is actually doing it.

Instead, Canadians commission studies at research facilities like the New Iberia Research Center in Louisiana, the largest facility of its type in the world. It’s home to nearly 7,000 primates, 360 of them chimpanzees.”

It is not only Canadians. Scientists from a number of other countries engage in behavioral and biomedical research collaboration involving chimpanzees housed in U.S. research institutions. Furthermore, when the Netherlands became the last European country to ban chimpanzee research almost a decade ago, it was acknowledged that because the opportunity for chimpanzee research remained in the U.S.everyone could be assured of continuation of the work without the cost, controversy, or responsibility of having to maintain the possibility within their own country.  A 2003 article highlights this point:

The end of European ape research, long sought by animal rights activists, was accelerated by a report published in 2001 by the Royal Netherlands Academy of Sciences (KNAW). It concluded that high costs and decreasing scientific need had made chimp studies all but superfluous. In rare instances where ape research will be crucial to combat a human disease, the panel said, large colonies funded by the National Institutes of Health (NIH) in the U.S. would be better equipped.

However, even in parliament itself some hypocrisy was acknowledged. Because ‘if the occasion arises’, the government quoted the KNAW report, Dutch researchers would still be free to do experiments abroad. Observed House member Bas van der Vlies (SGP): ‘Since through a back door [the Netherlands will profit from [ape research elsewhere, I see no reason for us to start beating our chests like gorillas.’”

The point made by Bas van der Vlies is a good one and one especially relevant now as the U.S. weighs legislation to end invasive chimpanzee research.  It is also more broadly relevant because it underscores why the decision of single entity, institution or nation, to end a particular type of research must be viewed within the context of the range of alternative opportunities and avenues that will serve the overall goal.  In other words, the decision to ban an avenue of research means one thing if that choice will result in a true end to the work. The same decision is inherently less risky if it is cushioned by knowledge that another institution or another country is committed to maintaining that research avenue and shouldering the accompanying burdens.

It is also true that the decision to “end” a particular kind of work is often more reflective of different types of cost considerations.  For example, note increasing outsourcing of animal research to other countries with less developed regulatory structure and lower costs. Whether that is good for animal welfare, science, research institutions, and the public is a topic of discussion among scientists and is one that should be given more thoughtful public consideration. We believe the US public is better served by advocating for reasonable improvements in animal welfare while keeping important medical research at home. The adoption of unrealistic policies and regulations that dramatically increase the cost of the work, while not significantly impacting on the well-being of the animals, will help drive the research overseas, with negative consequences on the biomedical leadership of our country and uncertain consequences for the well-being of the animals.  

So how do we tell the difference between individuals, institutions, and countries genuinely committed on moral or ethical grounds to ending particular types of research, rather than in only displacing it to others?  One piece of evidence would be for those claiming that the work is either unnecessary or unethical to also make clear that they do not simply outsource the work to other institutions or countries. 

Another would be for them to decline any benefits from the work.  For example, although we are aware of no efforts underway to preclude citizens of countries that disallowed such work to benefit from the findings or any advances made through chimpanzee biomedical research, for example hepatitis C vaccines currently under development, it would seem that this would be an easy way for people to affirm their commitment to the global picture. (Whether it should be habitat countries or a world-wide body who provides consent on behalf of the wild apes for whom conservationists are arguing should benefit from vaccines developed from research in laboratory studies of nonhuman primates might be a separate issue.)

What is gained from considering this more complicated picture?  In the case of the recent University of Toronto press coverage, a reminder that it is disingenuous at best to solicit public approval by disavowing research that the institution has conducted, has benefited from, and will continue to be involved in — albeit with the majority of risk and cost assumed by other institutions. In the case of chimpanzee research, a reminder that as long as non-U.S. interests benefit from and participate in studies conducted in the U.S., it is not accurate to claim that it is only the U.S.that sanctioned and benefited from such work.  And that includes the apes in Africa who could benefit from the vaccines developed via laboratory research in theU.S. and elsewhere.

Finally, we would advise a critical eye towards any articles in which universities, pharmaceutical companies, or countries claim that they are not engaged in primate or other animal research.  Those who have simply chosen to do the same work elsewhere or via collaboration should be clear about their involvement. Similarly, those whose work depends on data, tissues, or animal models developed by others, or at other institutions, should acknowledge a responsibility and involvement in the live animal work as well. 

Allyson J. Bennett