Daily Archives: March 24, 2017

Research Roundup: Ending the vaccine-autism myth, spider venom for stroke victims, and causes of polycystic ovary syndrome

Welcome to our third weekly roundups. These Friday posts aim to inform our readers about the many stories that relate to animal research each week. Do you have an animal research story we should include in next week’s Research Roundup? You can send it to us via our Facebook page or through the contact form on the website.

  • Studies on the relation between the environment and autism are starting to build, ending the vaccine-autism myth started in 1998. No vaccination has met the criteria of being a cause of autism – although some environmental factors increase the risk two to four times. Our understanding of many of these risk factors has been greatly increased with the help of animal research. For example, mouse research on the relation between maternal immune activation and autism-like phenotypes was later found to be consistent in human populations. Also, links to prenatal exposure to medications with teratogens were investigated in rats and found to be consistent with humans.
  • Spiders venom saves stroke victims: Funnel-web spiders are among the world’s deadliest spiders, but their venom can be life-saving. Since the venom targets the prey’s nervous system, researchers tested whether it could be harnessed to reverse brain damage after a stroke. After traveling to Fraser Island to collect three Darling Downs funnel-web spiders, researchers at University of Queensland and Monash University “milked” the spiders to collect their venom, then isolated a protein called Hi1a — a molecule that closely resembles another known for its protective effect on neurons. The team then synthesized their own version of Hi1a and gave the compound to rats two hours after an induced stroke. Neuron damage was reduced by 80 percent. Eight hours after a stroke, it was still effective in restoring neurological and motor functions by almost 65 percent. The researchers hope to commence human clinical trials in the next few years, pending replication of these initial findings and further research into the molecule.

  • A new study has found that polycystic ovary syndrome (PCOS) may start in the brain, not the ovaries, contrary to previous belief. While the cause of PCOS is unknown, one feature of this syndrome is high levels of androgens. Using a high dose of androgens, PCOS was induced in genetically engineered mice which display a receptor for androgens in specific parts of the body (brain, ovaries, nowhere in the body and a normal control group). Mice with androgen receptors in the normal control group developed PCOS as expected, while those without receptors in the brain and in the entire body did not. Interestingly, mice without androgen receptors in the ovaries also developed PCOS albeit at a lower rate than the control group. These data replicate the finding that high levels of androgens are implicated in the development of PCOS. More importantly, they highlight that it may be the interaction of these androgen in the brain rather than the ovaries that lead to the development of PCOS. PCOS affects 5-10% of women aged 18 to 44 and this study, using mice, has provided valuable insight into the onset of this syndrome.

  • A new study finds in mice that whole body vibration (WBV), a less intensive form of regular exercise, mimics the benefits derived from regular exercise. To investigate the benefits of WBV, scientists exposed normal mice and mice which don’t produce a receptor for leptin (a hormone associated with the feeling of being full after eating) to no exercise, either daily treadmill exercise, or WBV for three months. They found that in the normal mice and the leptin-deficient mice, WBV and exercise, affected mice in a similar way — reduced body weight, enhanced muscle mass, and insulin sensitivity compared to mice that were sedentary (no exercise group). This research, using mice, suggests that WBV may be useful as a supplemental therapy for individuals suffering from metabolic disorders or morbid obesity and where regular exercise is not an option.
  • Researchers have created a backpack-sized artificial lung that was able to fully oxygenate the blood of sheep for six hours. William Federspiel, at the University of Pittsburgh, has subsequently said the device has been used successfully on sheep for five days. The device had to combine a pump and gas exchange while remaining small enough to be carried. Even smaller devices have been developed to work on rats, using ultrathin tubing, just 20 micrometers in diameter. Such technologies could allow people with lung failure to continue with many of their daily activities, rather than becoming bed-ridden and attached to today’s artificial lung machines.

Image Credit: William Federspiel

  • A study funded by the NC3Rs explores how different handling methods affected behavior in cognitive tasks. Tail handling is still one of the more common methods of handling mice in the laboratory despite variable evidence that alternative methods such as cupped or tunnel handling may be less stressful for the animal. The researchers compared how mice reacted to new stimuli after being transferred into the testing area via a tunnel or being picked up by the tail. Because being picked up by the tail may be stressful for mice, tests which involve exploration may be affected by tail handling – as one consequence of stress in mice is freezing behavior (staying immobile). They found that the tunnel handling facilitated greater exploratory behavior, indicating that the simple process of tail handling may confound behavioral measures relating to anxiety. 3Rs research like this can help to understand the needs of animals in research labs, with the aim of improving animal welfare and the replicability of experimental results.

Image Credit: Jane Hurst, University of Liverpool.

Speaking of Research