Category Archives: Science News

Why I am proud to be a Registered Veterinary Technician in animal research

Christine Archer is a registered veterinary technician at the University of Ottawa in Ontario, Canada.  She has worked in animal research for over seven years.  She currently works with aquatic animals and reptiles in biological research. In this post, Christine looks at the interests and motivations that led her to become a laboratory animal technician, and her interest and love of aquatic animals. Fish account for 43% of research animals in Canada, with amphibians adding a further 3%. 


While I can’t say that I was ever a typical kid growing up in rural Canada, my surroundings definitely shaped my interests as I grew. I was always interested in the “gross” animals, from fish to frogs, and throw some snakes in there, too. I’d drive my mother crazy, catching animals in dubiously secure containers and bringing them home, only to have her insist that I take them right back where they came from. Just about the only exception was this big female wolf spider I rescued from a trough that ended up having an egg sac, which eventually resulted in many tiny spiders all over our house. I remember I’d also saved some newts from a tiny marsh that was being bulldozed for a new house. I hand fed them and kept them for years. They even went on vacation with us, in their not so dubiously secure critter keeper. All the while, I was also keeping many, many aquariums in my parents’ house, and breeding all manner of tropical fish. We had tanks in just about every room, even the bathrooms.

After a false start in engineering, I ended up studying biology in university, but I was so enamored with all of the sciences that I couldn’t decide what I really wanted to do with myself. When I was finishing up my undergrad, my cat Monty got very sick. The process of his treatment and recovery got me very interested in veterinary medicine. While I was feeling rather burnt out by my university studies at this point, I looked into taking a college program that would offer me practical hands-on skills in addition to the science of veterinary medicine. I went to college for veterinary technology, eager to consume all of the veterinary medical knowledge I could, especially everything that pertained to those “weird” animals that I loved. In the middle of my program, I took an internship at a large medical research facility. This is where I found what I was meant to do with my life. Marrying my love for science and the scientific method with my newfound love for veterinary medicine. The only thing missing (so far) were the weird animals I am so fond of. I learned about rodents and rabbits and the nuances of their biology. I learned about the 3 Rs and how essential good animal welfare is to doing good science. Throughout my life, I’d always felt like the weird kid who stood up for the weird animals that everyone didn’t like. I was a voice for them. Now, in research, I realized that I can continue to speak for my charges, no matter what species they are.

Racks of zebrafish at the University of Ottawa

Racks of zebrafish at the University of Ottawa

I finished school and became a Registered Veterinary Technician. I worked in cardiovascular research in a number of roles, working with traditional research animals like rodents and rabbits, and the occasional pig. It was great to be surrounded by colleagues who shared my interest in animal welfare and working hard to ensure that our charges’ welfare needs were being met every day. And then, one day, I got a call. The university’s aquatics and reptile facility needed an RVT for the summer, and my supervisor wondered if I would be interested. I couldn’t believe it. The opportunity to take part in veterinary nursing and the husbandry of all of those “weird” animals I’m still totally obsessed with? I’m there. However, I was reminded that it was only for the summer. Still, totally worth it. I said my tearful goodbyes to my colleagues at the rodent facility and started my position working with zebrafish, goldfish, trout, frogs, lizards, and even the occasional snake. That was more than three summers ago. I am still proudly caring for the veterinary and welfare needs of these animals today, as I was made a permanent staff member of the facility. I am so honored to be able to work with the animals I love, surrounded by passionate people working on everything from CRISPR research with zebrafish, to biomechanics work with fish that can walk on land. We still have so much to learn about these animals and their specific welfare needs, and I am thankful every day to be on the ground floor, working with colleagues who want to advance science while ensuring these animals, these weird, wonderful creatures, get the best possible care from the humans that depend on them.

Fish Facility at the University of Ottawa

Frogs (Silurana Tropicalis) at the University of Ottawa

On an average day in my facility, I can be found setting up zebrafish breedings and collecting embryos, or culturing live food like rotifers and brine shrimp for the fish to eat. My job requires me to be adept at multiple skills, from understanding the husbandry and welfare needs for our many diverse animals, to working with our staff veterinarians on developing and improving methods to anesthetize fish and frogs. Animal welfare is very important to me, and I strongly believe that the quality of my work has a direct impact on the quality of life of the animals I care for, which in turn has an impact on the quality of the research that my colleagues can perform. I work every day with multiple researchers to help ensure they are able to do the best work possible thanks to animals which are healthy, happy, and leading enriched lives.

I am proud to be a Registered Veterinary Technician in animal research, because I care very much about animal welfare and having the opportunity to speak for those who can’t speak for themselves is something I will never tire of.

Christine Archer

Nonhuman primate research gives us otherwise impossible treatments

stuart-bakerLast week, Dr. Stuart Baker, a Professor of Movement Neuroscience at Newcastle University, wrote an article in The Conversation detailing not only the lifesaving research that nonhuman primates contribute to, but also the exceptional care they receive while contributing to human health. Stuart last week also published a paper describing his laboratory’s development of a new device that helps stroke patients to recover, a device that was dependent on development first in rhesus monkeys.  In his piece in The Conversation, Baker highlights the following:

  • Why it is important to understand how the brain controls movement
  • Why nonhuman primates are superior to other animal models for this type of research
  • The state-of-the-art care his laboratory primates receive

Why it is important to understand how the brain controls movement

“We typically take the ability to move in a fluid, coordinated way for granted,” Baker writes. Yet many adults “suffer damage to the brain’s pathways for movement, for example after a stroke. Suddenly, everyday tasks become a tiring, frustrating struggle.” Baker studies how the brain controls movement in order to understand the connections between our brains and our limbs. By understanding how brain cells adapt their neuronal activity during movements, how neurons are connected, and how they reconfigure after injury, Baker can then develop devices for therapeutic treatment like the one he published about in The Journal of Neuroscience last week.

Why nonhuman primates are superior to other animal models for this type of research

In his article in The Conversation, Baker emphasized the need for nonhuman primates in movement neuroscience research. In order to understand the deepest inner workings of the brain – those that don’t contribute to scalp recordings, which can be used in humans – one must probe deeper than the surface. Baker uses an analogy of an airport: “When we record from the scalp, we average the signals from many millions of cells. It’s a bit like placing a microphone on the ceiling of an airport departure hall, and measuring the sound levels.” This type of information is useful because it can tell you “what times of the day the airport is busy.” But “some aspects of the airport’s operations – those outside on the tarmac – would be missed.” Similarly, Baker says, some brain centers that control movement are so deep beneath the skull that a deeper exploration beyond scalp recordings is required. Enter monkey models: “Many pathways for movement control are different between primates such as humans and other animals such as rats. Only a primate model can give us information which is relevant to human diseases.

One of Newcastle’s macaque monkeys. Newcastle University, Photo credit: S. Baker

One of Newcastle’s macaque monkeys. Newcastle University, Photo credit: S. Baker

The state-of-the-art care his laboratory primates receive

Stuart is well aware that there are inaccurate and baseless claims that his lab animals suffer. In The Conversation, he describes in detail the care his monkey receive, from positive reinforcement training so that they learn to perform complex tasks with their hands or arm to undergoing surgery “in a fully equipped operating theatre, with sophisticated anaesthetics and painkilling medication borrowed from state-of-the-art human care.” The monkeys are carefully monitored to ensure they are not distressed or in pain.

Baker also emphasizes the “huge effort [that] goes into minimizing suffering every day.” This effort is not optional, but “an integral part of what we do and who we are.”

Baker’s article is a wonderful example of the type of transparency that scientists should engage in more frequently. Without such candor, the public is unaware of the extent to which animal models contribute to lifesaving therapeutics – and also of the excellent care they receive from the people who truly love working with them.

What can you share about your research and the animals you work with?

Device to help stroke patients to recover moves from primates to people

Every year, 15 million people worldwide suffer a stroke, resulting in almost six million deaths and five million people left permanently disabled. It occurs when blood supply to the brain is blocked, or a blood vessel bursts. This prevents oxygen reaching the brain and can cause brain cells to die.

Many people who suffer strokes will subsequently experience spasticity, where the arm and leg muscles cramp or spasm as a result of message between the brain and muscle being blocked. This can cause long periods of contraction in major muscles resulting in bent elbows, pointed feet, arms pressed against the chest, or the distinctive curled hand common to many stroke survivors.

Neuroscientists at Newcastle University have developed a new device which aims to help stroke patients by strengthening a spinal connection known as the reticulospinal tract that can take over some of the function of more major neural pathways connecting the brain to spinal cord when they are damaged following a stroke. This strengthening can alleviate the symptoms of spasticity in the hand and arm of patients, allowing them additional control that can help them regain an important degree of independence in their life.

An article published yesterday in the Journal of Neuroscience (1) reports on the early success of this device, which is about the size of a mobile phone and can deliver an audible click followed by a small electric shock to the arm of patients. Electrical stimulation has previously been used to improve nerve function in other types of injury, but the combination with an auditory signal is new. The study shows that the device is able to strengthen the connections in the reticulospinal tract – the nerve tract in the spine which passes messages from the brain to the limb muscles. After a stroke, the body tends to recover the strength of connections to flexor muscles  (which allow you to close your hand)  more than extensor muscles (which allow you to open your hand). This is why many stroke patients suffer from a curled (semi-closed) hand.


Stuart Baker attaches the device to a patient

Healthy patients were wired up to receive weak electric shocks to their arm muscle alongside a click sound. The individuals were then sent about their day. By altering the timing of the clicks and shocks they could strengthen or weaken the patients’ reflexes. By wearing the portable electronic device for seven hours, during which time the patients could carry out their daily work, the scientists were able to show that the signal pathways were strengthened in more than half of the patients (15 of 25).

So how did they discover that following a small electric shock with a click could strengthen the nerve pathways between the brain and the arm? Well, it’s a classic case of “Fortune favours the prepared mind”!

Stuart Baker, Professor of Movement Neuroscience at Newcastle University who has led the work said: “We were astonished to find that a small electric shock and the sound of a click had the potential to change the brain’s connections. However, our previous research in primates changed our thinking about how we could activate these pathways, leading to our study in humans.

In 2012 Baker and his colleagues published a paper reporting on their evaluation of a non-invasive transcranial magnetic stimulation (TMS) in stimulating nerve cells in a part of the brainstem called the reticular formation –  where the reticulospinal tract begins – in anaesthetised macaque monkeys, which they undertook as preparation for using TMS in studies in monkeys and human volunteers.   They observed that while the TMS stimulus produced a the expected quick response in the nerve cells, they also produced a puzzling delayed response, which they thought might be triggered not by the changes in the magnetic field but rather to the audible click that the TMS making made when its coil discharged. To test this idea they used a miniature bone vibrator to generate the same kind of click, and found that it stimulated a very similar pattern of nerve activation to that evoked by the sound of the  TMS coil discharge.

At first they viewed this nerve response to the click sound made by the TMS machine as a complication that needed to be accounted for in future studies of the reticular formation, but very quickly realised that the click response could itself be useful as a non-invasive experimental tool, and might even be useful in the clinic.

Baker wanted to know exactly how much the arm-brain connections were controlled by the reticulospinal pathway they were studying, and determine if the timing of a click following the small electric shock made any difference. To assess this, they got primates to do a similar task to that later evaluated in human volunteers. What they found was that by changing the timing between clicks and small electrical shocks, they could change the strength of reflex of the monkeys by as much as 50%. This has given the researchers the confidence to move this into a clinical trial of stroke patients.


The macaques monkeys were given food rewards for performing a simple movement based task.

Baker recently published an article on The Conversation entitled “Using monkeys for research is justified – it’s giving us treatments that would be otherwise impossible“. An extract is provided below:

In my own work, we use a small number of macaques to gain this fine-grain understanding. Many pathways for movement control are different between primates such as humans and other animals such as rats. Only a primate model can give us information which is relevant to human diseases.

To learn how these pathways are actually used to control movements, in some studies we first teach the macaque to perform complex tasks with their hands or arm. Getting it right is rewarded with a treat (typically fruit or nuts, but chocolate or strawberry yoghurt also sometimes feature). Once they know what to do, we carry out a surgical implant to allow us to record from the brain using fine electrodes, with tips around the same size as single cells.

All surgery is done in a fully equipped operating theatre, with sophisticated anaesthetics and painkilling medication borrowed from state-of-the-art human care. Once the macaque has recovered, we can record from the brain cells while they do the trained task. An animal that is stressed or in pain would not willingly cooperate with the experiments. The animals seem to enjoy the daily interaction with the lab staff and show no distress.

Our studies are right at the crossroads of basic and clinical sciences. We are trying to understand fundamental brain circuits, and how they change in disease and recovery. Over the past ten years, we’ve shown that a primitive pathway linking brain to spinal cord can carry signals related to hand use. That was a surprise, as until now it was assumed that the primate hand was controlled only by more sophisticated pathways that developed later in evolution.

A clinical trial will now start in Kolkata, India, involving 150 stroke patients. It aims to see whether this new device can improve hand and arm control. The work at Newcastle University has been funded by the Medical Research Council and the Wellcome Trust.

chris-blowerChris Blower, 30, suffered a stroke at the age of seven, which paralysed him down onside, slurred his speech and caused him to lose bowel control and move unaided. Though he recovered from these immediate effects, he still suffers slow, limited and difficult movement in his right arm and leg. Here is an extract from his story:

My situation is not unique and many stroke survivors have similar long-term effects to mine. Professor Baker’s work may be able to help people in my position regain some, if not all, motor control of their arm and hand. His research shows that, in stroke, the brains motor pathway to the spinal cord is damaged and that an evolutionarily older signal pathway could be ‘piggybacked’ and used instead. With electrical stimulation, exercise and an audible cue the brain can be taught to use this older pathway instead.

This gives me a lot of hope for stroke survivors. My wrist and fingers pull in, closing my hand into a fist, but with the device Professor Baker is proposing my brain could be re-taught to use my muscles and pull back, opening my hand out. The options presented to me so far, by doctors, have been Botox injections and surgery; Botox in my arm would weaken the muscles closing my hand and allow my fingers to spread, surgery would do the same thing by moving the tendons in my arm. Professor Baker’s electrical stimulations is certainly a more appealing option, to me, as it seems to be a permanent solution that would not require an operation on my arm.

Keith toured the animal house at Newcastle University. He noted after:

The macaque monkey that I observed was calmly carrying out finger manipulation tests while electrodes monitored the cells of her spinal cord.

Although this procedure requires electrodes to be placed into the brain and spine of the animal, Professor Baker explained how the monkey had been practising and learning this test for two years before the monitoring equipment was attached. In this way the testing has become routine before it had even started and the animal was in no pain or distress, even at the sight of a stranger (me).

The animals’ calm, placid temperaments carry over to their living spaces; with lots of windows, natural light and high up spaces the macaques are able to see all around them and along the corridors.

It is great to see Newcastle University being clear about the contribution of animal studies to clincal work. In their press release they noted that “the research published today is a proof of concept in human subjects and comes directly out of the team’s work on primates”.

Baker notes in his recent article,” In my opinion, we should not condemn large numbers of people to disability and dependence, but need to use all of the tools of modern science to discover and innovate the solutions. I am confident that the next 50 years will see wonderful progress in treatments for these terrible disorders and primate research will be central to this effort.

You can read more about animal research at Newcastle University from their website.

Speaking of Research


  1. K.M. Riashad Foysal, Felipe de Carvalho, Stuart N. Baker. Spike-timing Dependent Plasticity in the Long Latency Stretch Reflex Following Paired Stimulation from a Wearable Electronic Device.  Journal of Neuroscience, 

Research with sheep demonstrates utility of new synthetic blood vessels

Children born with heart defects often undergo multiple surgeries throughout their lives because the synthetic materials used to replace blood vessels and heart valves do not grow with the patient (1). The implant needed for an infant will be far too small once that child grows up.  In addition, if the replacement is grafted from another person or from an animal, the child may need to take immunosuppressant drugs for the rest of their lives to prevent their body from rejecting the graft.

Scientists from the University of Minnesota, led by Dr. Robert Tranquillo, tested a new technique in lambs allowing for an implanted graft to grow with the patient (2). The scientists coaxed cells, called fibroblasts, into growing a tube of collagen—a stretchy matrix of protein that gives structure to skin and blood vessels. Once the tube was made, the researchers used a special solution to remove the fibroblast cells. What remained—a flexible collagen vessel—was implanted it into the pulmonary artery of an 8-week-old lamb. Since collagen is the natural structural component of blood vessels, the scientists expected that the lamb’s body would accept the graft and that the new vessel would grow with the animal. And that’s exactly what the researchers saw. Forty-two weeks after implantation, scientists discovered that the replacement artery enlarged in diameter and volume as the lamb grew. The implanted artery had also been fully colonized by the lamb’s own cells and had all the mechanical and biological features of a native artery.

"Researchers are working to create an “off-the-shelf” material that doctors can implant in a patient, and it can grow in the body. This research has the potential to prevent the need for repeated surgeries in some children with congenital heart defects." - Image courtesy of University of Minnesota

“Researchers are working to create an “off-the-shelf” material that doctors can implant in a patient, and it can grow in the body. This research has the potential to prevent the need for repeated surgeries in some children with congenital heart defects.” – Image courtesy of University of Minnesota

This finding builds off of Dr. Tranquillo’s extensive research into cardiovascular tissue engineering (1, 3, 4, 5). Previously, his laboratory has developed “tissue-equivalents” to replace diseased or damaged arteries.  He and his team are also working to develop new heart valves that can be introduced into the patient via a catheter instead of open heart surgery.

Earlier attempts to create implants that grew with the patient required extracting cells from the patient, waiting for them to grow in culture, seeding them within a bio-degradable scaffold, and then implanting the structure back into the patient. These attempts were successful, but since each artery was custom-made, this technique was costly, and would require developing reliable ways to extract and culture cells from patients before it could be widely used. In this new method, the artery does not need to be grown from the patient’s cells—any fibroblasts will work—so replacement arteries can be mass-produced and used ‘off-the-shelf’. In addition, all cells are washed from the collagen tube before implantation, so there’s no risk of rejection by the patient’s immune system. Most importantly, if these experiments from lambs carry over to humans, these grafts should be fully accepted by the patient and grow along with them, meaning that an infant who receives one of these grafts will have a permanent, fully functional blood vessel that won’t need replacement as she or he grows. Tranquillo and his team are working to develop replacement vessels that include valves (3).

"Robert Tranquillo, department head and professor of biomedical engineering, is leading tissue engineering research. He and his team are growing tissue that could one day replace a defective pediatric heart valve." - Image Courtesy of the University of Minnesota

“Robert Tranquillo, department head and professor of biomedical engineering, is leading tissue engineering research. He and his team are growing tissue that could one day replace a defective pediatric heart valve.” – Image courtesy of the University of Minnesota

Many anatomical and physiological similarities exist between the cardiovascular systems of sheep and humans, and large animal models, such as the sheep, are integral in moving research from the laboratory into the clinic. Dr. Tranquillo’s work with sheep and lambs is advancing our understanding of tissue bio-mechanics and could one day allow natural heart valve and blood vessel replacement.

Samuel Henager
Science Policy Fellow, FASEB
Graduate Student, Johns Hopkins University


(1) Implantation of a tissue-engineered tubular heart valve in growing lambs
Reimer, J.M., Syedain, Z.H., Haynei, B., Lahti, M., Berry, J. and R.T. Tranquillo
Ann Biomed Eng (2016). doi:10.1007/s10439-016-1605-7

(2) Tissue engineering of a cellular vascular grafts capable of somatic growth in young lambs
Syedain, Z.H., Reimer, J. M., Lahti, M., Berry, J., Johnson, S., and R.T. Tranquillo
Nat Comm (2016). doi:10.1038/ncomms12951

(3) 6-month aortic valve implantation of an off-the-shelf tissue-engineered valve in sheep
Syedain, Z.H., Reimer, J.M., Schmidt, J.B., Lahti, M., Berry, J., Bianco, R. and R.T. Tranquillo
Biomaterials 73:175-84 (2015).

(4) Implantation of completely biological engineered grafts following decellularization into the sheep femoral artery
Syedain, Z.H., Meier, L.A., Lahti, M.T., Johnson, S.L., Hebbel, R.P and R. T. Tranquillo
Tissue Eng Part A 20: 1726-34 (2014).

(5) Aligned human microvessels formed in 3D fibrin gel by constraint of gel contraction
Morin, K.T., Smith, A.O., Davis, G.E., and R.T. Tranquillo
Microvasc Res 90:12-22 (2013).

Nobel Prize 2016 – how yeast and mouse studies uncovered autophagy

Congratulations to Professor Yoshinori Ohsumi Tokyo Institute of Technology on being awarded the 2016 Nobel Prize in Physiology or Medicine for “for his discoveries of mechanisms for autophagy“!


Yoshinori Ohsumi. Image: Tokyo Institute of Technology

The process of autophagy is hardly one familiar to most people, but is is absolutely crucial to all complex life on out planet, including ourselves. The name autophagy comes from the Greek words for “self” and “eating” and describes the ordered process through which cells break down and recycle unnecessary or damaged structures or proteins, and allows the cell to reach an equilibrium between the synthesis and degradation of proteins.

The discovery of autophagy

The process itself was identified through studies in tissues of mice and rats back in the 1950’s and 1960’s, by scientists including Christian de Duve, who was subsequently awarded the Nobel Prize in Physiology or Medicine in 1974 for this and other work. They first discovered that mammalian cells contain a compartment which they termed the lysosome where proteins are broken down, and then that proteins and other molecules that were to be degraded were first isolated from the rest of the cell by the formation of a membrane sac around the protein in question  (later called the autophagosome). The process through which the autophagosome fused with the lysosome to deliver its protein cargo for degradation was given the name autophagy by Christian de Duve.



Progress in understanding how autophagy worked was slow, as at the time the genes or proteins involved in regulating the process had been identified. With the research methods available at the time it was difficult to measure autophagy as it happened in mammalian cells, and hence difficult to determine how altering different components affected the overall process, a key step towards understanding their role. It may have seemed an unpromising field to join, but Yoshinori Ohsumi had a different career philosophy to most researchers, which he described in an interview given in 2012:

I am not very competitive, so I always look for a new subject to study, even if it is not so popular. If you start from some sort of basic, new observation, you will have plenty to work on.

From cells to genes

What was needed was a simple experimental system in which to study the process, and the bakers yeast Saccharomyces cerevisiae  – a simple single celled organism separated from us by hundreds of millions of years of evolution, but sharing many of our key biological processes – was one candidate. Yoshinori Ohsumi had worked with yeast, and in particular had identified many proteins in a subcellular component of the yeast cell known as the vacuole, which was important as there was evidence that the vacuole performed the same role in yeast cells as the lysosome in mammalian cells. Still, as the Nobel Prize website highlights there were still hurdles to overcome as he began his study of autophagy in yeast at the end of the 1980’s:

But Ohsumi faced a major challenge; yeast cells are small and their inner structures are not easily distinguished under the microscope and thus he was uncertain whether autophagy even existed in this organism. Ohsumi reasoned that if he could disrupt the degradation process in the vacuole while the process of autophagy was active, then autophagosomes should accumulate within the vacuole and become visible under the microscope. He therefore cultured mutated yeast lacking vacuolar degradation enzymes and simultaneously stimulated autophagy by starving the cells. The results were striking! Within hours, the vacuoles were filled with small vesicles that had not been degraded (Figure 2). The vesicles were autophagosomes and Ohsumi’s experiment proved that authophagy exists in yeast cells. But even more importantly, he now had a method to identify and characterize key genes involved this process.

With an experimental system available Yoshinori Ohsumi and his team studied the process of autophagy in thousands of mutant strains of yeast, and identified 15 individual genes (most of them of previously unknown function) that are essential for the process in yeast, tho order in which the key events in autophagy take place, and the roles of the individual genes in them. This was the work for which he was awarded the Nobel Prize.

From yeast genes to us!

But it is not the end of the story! Identifying the genes essential for autophagy in yeast, and their roles in the process, was a major breakthrough, but what about humans and other mammals?

It turns out that that in humans and other mammals there are counterparts to almost all the yeast autophagy genes, though the situation is made a lot more complicated by the face that mammals have more than one copy for each of the genes…starting with yeast was a wise move! Professor Noboru Mizushima of the University of Tokyo made an important advance when, working with Yoshinori Ohsumi,  he developed a transgenic mouse in which a protein called LC3 that is found in the autophagosome membrane is fused to Green Fluorescent Protein (GFP – see Nobel Prize for Chemistry 2008) which allowed him and his colleagues to observe and monitor the process of autophage in vivo in mice for the first time.

Laboratory Mice are the most common species used in research

This LC3-GFP transgenic mouse proved to be a very powerful research tool for studying mammalian autophagy, allowing not only the role of indicudual genes in the process to be determined, but also the role of autophagy itself in processes as diverse as early embryonic development, tumor suppression, nerve cell survival and function, and protection against infection.

This research is still at a relatively early stage, but techniques such as the LC3-GFP system in mice – and others used in organisms such as fruit flies, are showing us how defects in autophagy contribute to many diseases, including neurodegenerative disorders such as Parkinson’s Disease, and metabolic disorders such as type 2 Diabetes. While the development of specific therapies to correct these defects in autophagy is still some way off, it is already clear that understanding autophagy has the potential to improve the treatment of a wide range of illnesses.

What the work of Yoshinori Ohsumi demonstrates once again is the crucial contribution of basic biological research in model organisms that may at first glance appear to share little with us to the advancement of medicine.

Speaking of Research



University of Stirling improving animal welfare for dogs

A study, conducted by the University of Stirling, in collaboration with AstraZeneca and Charles River Laboratories, aimed to look at the impact of modern, purpose-built dog facilities, on the animals’ welfare. Dr Laura Scullion Hall and Professor Hannah Buchanan-Smith, from the Behaviour and Evolution Group (BERG) at the University of Stirling, published a paper (1) that aimed to validate the welfare benefits of the modern home design pens for dogs. The research was funded by the Biotechnology and Biological Sciences Research Council in the UK, and the National Centre for the Replacement, Refinement & Reduction of Animals in Research (NC3Rs).

There is a clear body of evidence showing the positive impacts of housing refinement on numerous species (2)(3)(4), however, according to Hall, the design of the home pens for dogs “has received little scientific attention since the 1990s, since when legislative minimum standards have improved”. Dogs spend most of their time in home pens, usually interspersed with occasional use of playrooms. The study compared animal welfare using the modern and traditional home pens.


From left to right: modern home pen; traditional home pen; indoor play area. Image Credit: Behaviour and Evolution Research Group, University of Stirling.

These newer home pens are larger (around 4.8m2/animal compared with the EU minimum of 2.25m2/animal), provide good visibility for the dogs and staff, choice of resting places, noise reducing materials, horizontal rather than vertical bars and enrichment toys inside. The researchers concluded that “the Refinements described here are implemented consistently across industry and suggest that factors such as home pen design should be included in the design of experimental studies.”

Laboratory housed dogs in home pens, AstraZeneca facility. Credit: Laura Hall / Refining Dog Care

Laboratory housed dogs in modern home pens, AstraZeneca facility. Credit: Laura Hall / Refining Dog Care

Dr Hall had previously won an award from NC3Rs for her paper on improving techniques for oral dosing in dogs.  She also developed the “Refining Dog Care” website, to:

[I]mprove the welfare of dogs used in scientific research and testing worldwide, and to improve the quality of data which is obtained from their use. We do this by collaborating with our partners in industry, drawing on expertise and empirical data, to provide guidance on best practice for housing and husbandry, and provide online resources and hands-on training to staff to implement positive reinforcement training protocols for regulated procedures.

Around 4,000 procedures on dogs are carried out in the UK each year (around 0.1% of the total), these are mainly for safety testing, conducted at pharmaceutical or contract research organisations. The fact this research was conducted in collaboration with such organisations will hopefully speed its implementation.

Speaking of Research


  1. Hall et al, 2016, “The influence of facility and home pen design on the welfare of the laboratory-housed dog” in Journal of Pharmacological and Toxicological Methods,
  2. Everds et al, 2013, “Interpreting stress responses during routine toxicity studies a review of the biology, impact, and assessment” in Toxicologic Pathology, 41 (2013)
  3. Hall, 2014, A practical framework for harmonising welfare and quality of data output in the laboratory-housed dog,D. thesis
  4. Tasker, 2012, Linking welfare and quality of scientific output in cynomolgus macaques (Macaca fascicularis) used for regulatory toxicology,D. thesis

2016 Lasker Awards shows importance of animal research

The 2016 Lasker Awards have highlighted some great discoveries and the scientists behind them. This guest post by Samuel Henager, a graduate student at Johns Hopkins University, investigates how animal studies contributed to the discoveries celebrated by this years’ Lasker Awards.

Basic Medical Research Award

The 2016 Albert Lasker Basic Medical Research Award was awarded to William G. Kaelin, Jr. of Dana-Farber Cancer Institute, Harvard Medical School, Peter J. Ratcliffe of University of Oxford, Francis Crick Institute, and Gregg L. Semenza of Johns Hopkins University School of Medicine for their work in discovering how cells sense and respond to changes in oxygen levels.

Image Credit:  Lasker Foundation

Image Credit: Lasker Foundation

Oxygen is crucial for survival, but at the same time, too much can be toxic for cells and damage DNA and proteins. Thus, it is crucial for cells to be able to sense and respond to the concentration of oxygen in its environment. Semenza and Ratcliffe discovered that under low-oxygen conditions the protein hypoxia-inducible factor-1a (HIF-1α) turns on many genes. Subsequently Kaelin and Ratcliffe discovered that under high-oxygen conditions, an enzyme called prolyl hydroxylase caused HIF-1a to be destroyed by the protein von Hippel-Lindau (VHL). VHL is mutated in von Hippel-Lindau disease, which is characterized by large tumors made of blood vessels. In the disease, HIF-1α levels are artificially high due to a defective VHL protein, thus tricking the body into thinking it needs more oxygen, and mistakenly growing unneeded blood vessels to carry oxygen to seemingly low-oxygen tissues.

The discovery of the full pathway for how cells respond to differing levels of oxygen has fueled ongoing research. Stopping the destruction of HIF-1α can help with anemia, a condition where low iron makes red blood cells less effective at carrying oxygen, by increasing the production of red blood cells. There are also cancer treatment applications, as some tumors’ survival depends on HIF-1α to spur the development of new blood vessels.

Anemia. Image Credit: NIH

Anemia. Image Credit: NIH

HIF-1α is conserved across a wide variety of species, and many animal models played a crucial role in the discovery of HIF-1α and its function. The first study by Ratcliffe that indicated a wide-spread response to low oxygen used multiple cell culture systems from monkey, pig, Chinese hamster, rat, and mouse cells. In later studies by Kaelin, Ratcliffe, and Semenza, reticulocytes—precursors to red blood cells—from rabbits were used to generate HIF-1α protein to study in vitro.  Xenopus laevis (frog) cells were used to study how prolyl hydroxylase was involved in the destruction of HIF-1α. C. elegans (roundworm) were used to investigate how mutations in VHL affected a whole organism’s ability to respond to low oxygen levels. Mice were used to study how HIF-1a might be involved in anemia. The discoveries celebrated by this award have fueled new avenues of research and the development of novel therapies, and animal models will surely continue to be a key part of this story.

Clinical Medical Research Award

The 2016 Lasker-DeBakey Clinical Medical Research Award was given to Ralf Bartenschlager of Heidelberg University, Charles M. Rice of Rockefeller University, and Michael J. Sofia of Arbutus Biopharma for their work in developing a system to replicate Hepatitis C virus (HCV) in the lab and for using this system to develop new drugs to cure Hepatitis C infections.

Image Credit: Lasker Foundation

Image Credit: Lasker Foundation

Hepatitis C can be a devastating illness, leading to cirrhosis of the liver, liver failure, and liver cancer.  Previous treatments to fight the infection were highly toxic and did not effectively cure the person from disease. Drs. Bartenschlager, Rice, and Sofia all contributed to discovering a much safer, effective treatment for Hepatitis C.

Hepatitis C prevalence

Hepatitis C prevalence. Image Credit: CDC

The virus responsible for Hepatitis C was identified in 1989. For many years after its discovery, scientists struggled to create a strain of HCV that could replicate under laboratory conditions so that they could study the components and life-cycle of the virus in order to develop treatments or a vaccine. In the late 1990s, Dr. Rice recreated the full genetic sequence of the virus, and used this sequence to infect chimpanzees with the virus. At the time, chimpanzees were the only animal model for hepatitis, and he needed to make sure that the sequence he had identified was capable of replicating and causing disease. At the same time, Dr. Bartenschlager was attempting to infect liver cells using the newly identified sequence, but never detected replication. He was unsuccessful until he inserted a drug-resistance gene into the virus which allowed infected cells to survive when the culture was treated with a lethal drug. He also identified several mutations in the virus that allowed for better replication. With this improved sequence he was able to successfully infect a liver cell line with hepatitis C, which allowed scientists to study the virus in depth and begin to develop therapies for the disease. Dr. Sofia led a team of pharmaceutical researchers that developed a novel therapy for hepatitis. This new therapy is able to cure chronic hepatitis for many patients, who otherwise would be at risk for liver failure and liver cancer.

This is not only a great story of finding a cure for what can be a devastating disease, but also a great example of the value of non-human primate (NHP) research. The cellular replication system developed by Dr. Bartenschlager was important for developing drugs and studying the life-cycle of the hepatitis viruses, but for many years, the only way to study HCV was in a chimpanzee model. Chronic hepatitis C infection can lead to liver cancer, but how the virus or disease contributes to cancer development is not known. Humanized mouse models of hepatitis have been introduced in recent years, and scientists continue to work to improve their accuracy. These mouse models will be crucial as scientists work to unravel the remaining questions surrounding this disease, and work to develop effective treatments and vaccines.

Samuel Henager

Graduate student, Johns Hopkins University