Author Archives: Editor

Say NO to the harassment of Christine Lattin by PETA activists

Please leave a comment of support at the bottom of this article for Christine, and please share with your colleagues to raise awareness of the vile and irresponsible tactics of PETA in their targeting of a young researcher at Yale University.

What would someone need to do to deserve threats online, protests at their place of work, and the publication of their image and home address? According to PETA, they would just need to be a researcher that works on animals.

PETA activists protesting outside the annual meeting of the Society for Behavioral Neuroendocrinology in Long Beach, California, in June 2017

Christine Lattin is a post-doctoral researcher at Yale University who studies birds in order to better understand the impact of stress on animals and humans. In her own words:

The focus of my research is to understand how different neurotransmitters and hormones help animals successfully choose mates, raise young, escape from predators, and survive harsh winters and other challenging conditions. One of the major areas of my research is the stress response. While stress helps animals and humans survive and cope with challenges, too much stress is bad and leads to health problems. Understanding stress in wild animal populations is important because stressors like habitat destruction, climate change, and species invasions now affect most, if not all, animal species.

Christine believes in openness and transparency, which is why she runs a website where she explains more about her research – this can help educate the public on the importance of the work she does. It is well worth a read: www.christinelattin.com. All of Dr Lattin’s work has been approved by the Yale Institutional Animal Care and Use Committee, and all of it must comply with the Ornithological Council’s ‘Guidelines to the use of wild birds in research’.

PETA do not like animal research, and PETA do not like Christine Lattin. Why did they choose to focus on her? Who knows. Is it because she is young? Female? Not yet tenured? While avian research is not a common target for animal rights groups, the fact she studies stress would fit the typical choice of target.

In May, PETA set up an alert to allow individuals to send emails to administrators at Yale University, demanding that the institution “put an immediate end to Lattin’s experiments on birds”. Her research is presented as cruel, curiosity-driven torture. These misleading claims are put next to images of Christine for any activist to see.

Let us briefly examine some of the claims made by PETA:

“Some birds were fed crude oil, and others’ legs were wounded without any pain relief. After weeks and sometimes months of repeated abuse, they’re then killed. Not only are the experiments extremely cruel, they’re also wasteful because important physiological differences between species make the results inapplicable to humans or other birds.”

The oil research provides an example of how Christine’s research is misrepresented. Context is crucial. The study involved putting small amounts of oil into the food (equal to 1% of food weight) of captured wild sparrows. While there were no obvious outward signs this had any effect, and many potential biomarkers of oil exposure in the blood were also normal, blood sampling revealed that birds were not able to secrete normal concentrations of stress hormones after exposure to a standardized stressor (a brief period of restraint in a clean, breathable cloth bag) and an injection of adrenocorticotropic hormone. Contrary to the PETA claim that such research was not applicable to other species, Christine explicitly states the relevance of her research to other birds in her publication: “as a passerine species, they are taxonomically similar to many birds living in coastal and riparian areas contaminated by oil, such as seaside sparrows (Ammodramus maritimus) and tree swallows (Tachycineta bicolor).” Furthermore, this research is already being used by other researchers to show health problems and deaths observed in wild dolphins and sea turtles after Deepwater Horizon were due to oil exposure. On the claim that birds’ “legs were wounded without any pain relief”, this is categorically false. A brief glimpse at the original paper shows that the birds were anesthetised (using isoflurane, the general anesthetic recommended by the Ornithological Council because of its safety in birds):

“[W]e administered a small superficial wound to either the left or right thigh of birds using a 4 mm biopsy punch […] Prior to wounding we anesthetized birds using isoflurane.”

The PETA alert began a string of abuse on Twitter:

PETA activist tweets against Christine Lattin

Click to Enlarge

From the merely aggressive “All you do is torture and slaughter birds for USELESS research” to the outright threatening “She should be put out of her misery” and “I am the bump in the night for you Christine Lattin unless you resign”. One hopes that PETA will be policing these comments and reporting them to Twitter, though I sadly doubt it.

It is worth taking a moment to thank the many people who came to Christine’s aid on Twitter (and there were many people). One user noted:

Another noted the hypocrisy of PETA, noting a recent incident where PETA had to pay $49,000 to settle a lawsuit after they stole and put down a young girl’s pet chihuahua.

As some might expect, the comments have not been limited to Twitter. As a result of the PETA campaign, Christine has received numerous hateful and threatening emails. No researcher, particularly one still taking their first steps in research, should have to deal with this sort of harassment.

In the latest stunt, PETA activist (note the PETA email address), has organised a protest outside Christine’s home.

A screenshot from a home protest set up by PETA activist to be outside the home of Christine Lattin. Her address has been blotted out, and we have highlighted certain details in red.

There are four things to note from this event:

  1. A protest is planned outside Christine’s home (where her husband and child also live)
  2. Inflammatory language and false claims are made in the text.
  3. It is set up by an official PETA campaigner, Katerina Davidovich. The fact she is an official PETA campaigner is evidenced by her PETA email address.
  4. She/PETA will be providing all materials for the protest.

PETA are irresponsible in their decision to put the home address of Christine and her family in the public domain, next to false claims. We roundly condemn PETA for their actions and hope they not only remove all details of their upcoming home protest but also issue a prominent apology to Christine for the harassment she has received.

Please join us in condemning this campaign of harassment by PETA. We hope many scientists will leave a message of support for Christine alongside their name, role, and institution.

Speaking of Research

Does talcum powder cause ovarian cancer? Weighing up the human and animal studies

In this article, Justin Varholick, investigates the evidence on whether talcum powder can cause ovarian cancer. Over the years, several courts have ruled that talcum powder can cause ovarian cancer, while the scientific evidence suggests otherwise. In light of Ovarian Cancer Month, it is important to highlight how animal and human studies can improve our understanding of the disease, and prevent misinformation spread from the media. This article outlines that both animal and human studies are not perfect. Animal studies sometimes do not have proper controls and human studies suffer from bias. The current research suggests no direct link between talc and cancer, but more research is certainly necessary.

Ovarian cancer is a serious disease affecting around 22,000 women in the United States and contributing to around 14,000 deaths each year. Since the 1960s the American public has questioned whether the use of talcum powder – for soothing dry skin, absorbing sweat, and preventing chafing of the thighs — increases women’s’ risk for ovarian cancer. This speculation began after acknowledging the risks of asbestos and public theories that asbestos was in talc products; however, cosmetic grade talc undergoes strict quality control and does not contain asbestos.

Image by Austin Kirk

Multiple studies on rodents, non-human primates, and humans have investigated the link between talc and cancer since the 1960s. Overall the results are inconsistent; some studies suggest talc is associated with ovarian cancer while others suggest talc is not carcinogenic. Recently, despite these inconsistencies, a Los Angeles jury ordered Johnson & Johnson to pay $417 million to a woman who blamed her terminal ovarian cancer on the use of baby powder — this is just one of many lawsuits against Johnson & Johnson over their talc powder. In light of this recent event I would like to delve into the animal and human studies investigating the link between talcum powder and ovarian cancer.

Is talcum powder a carcinogen?

Empirical studies first began on rodents such as hamsters, rats, and mice; however, these studies only focused on whether talc was a carcinogen in general. Researchers chose rodents because it is relatively easy to systematically administer talc to rodents via inhalation. Furthermore, rodents — especially the laboratory rat — are particularly sensitive to forming malignant tumors in the lungs when exposed to chemicals via inhalation regardless of the chemical itself. Therefore, by using rodents there is an increased chance of detecting an effect of cancer following exposure to talc via inhalation — if one is present. It is important to note here that although humans are exposed to talc by inhalation or via topical application, the specific method of applying talc is not important when determining general carcinogenicity.

For one of the first studies investigating talc exposure and cancer in rodents, researchers first gathered information on how much baby powder human infants were regularly exposed to – although infants are usually exposed via topical application and rodents are exposed via inhalation. Using this information they designed an experiment using hamsters and exceeded the amount of talc human infants are normally exposed to by 30 to 1700 times — depending on the experimental treatment group. The scientists also formed a control group that was exposed to a negative dust control; titanium dioxide. This control is important because increased levels of dust in the air can lead to chronic inflammation of the lungs, which increases the risk of malignant tumors — independent of particle type (e.g. talc powder, titanium dioxide, toner, carbon black, etc.). Controlling for dust and exceeding levels of normal exposure, the study reported no difference between the groups in body weight, survival, or signs of cancer in the larynx, trachea, lungs, liver, kidney, stomach, uterus, ovaries, or testes of these hamsters.

Further studies were conducted on rodents — specifically mice and rats — that did find an effect linking cancer to talc; however, these studies were confounded. One study in particular found that female rats and mice exposed to high levels of talc via inhalation for 4 months had a higher risk of lung cancer. Unfortunately, this study did not use a titanium dioxide control group, thus the finding could be an artefact of chronic inflammation from air particles — as discussed above. Furthermore, this study was unable to identify another biological mechanism beyond chronic inflammation responsible for the onset of cancer.

In summary, these rodent studies allowed scientists to exceed normal exposure levels and use an animal with increased sensitivity to the treatment in question. However, proper control groups must be used to help elucidate whether the effect is an artefact. Importantly, these studies were only interested in whether talc is a possible carcinogen, not whether ovaries exposed to talc have increased risk of cancer specifically. Overall, these studies were unable to find a link between talc and risk of cancer, beyond chronic inflammation from increased levels of air particulates.

Can talcum powder be found in the ovaries?

Some studies in animals and humans have been particularly focused on finding a link between talc use and ovarian cancer — not just whether talc is a carcinogen. To understand the plausibility of this link, these studies first needed to establish whether it is possible for particles of talc to migrate into the genital tract after being applied topically to the perineal region (area between vagina/scrotum and anus). A simple understanding of biophysics led many to conclude that it was impossible for the particles to travel up the vagina, cross the cervix, travel through the uterus, and then “swim” upstream through the oviducts; without being assisted by some form of locomotion. Nonetheless, some studies using animals investigated whether it was a possibility. Specifically, one study using female cynomolgus monkeys (Macaca fascicularis) — an animal model anatomically and physiologically comparable to human female — investigated whether carbon black particles could reach the oviducts or ovaries. This study was unable to conclude that carbon black particles could indeed travel up to the oviducts or ovaries.

Image by Noveprim

Further studies were done with human females that applied talcum powder to their underwear or perineal region daily that also had ovarian or pelvic cancer; which required surgical removal of the ovaries.  After removing the ovaries, scientists used microscopy techniques to scan the ovaries and identified low numbers of particles that were relatively small in size in about 50–75% of cases (multiple studies). Thus, although talc can be found in or around ovarian tissue the amount found was considered too small to cause ovarian cancer. It has also been noted that findings from these studies were widely inconsistent and were confounded by women lying in a supine or Trendelenburg position — which may aid in the surgery of the pelvic region but is also used to aid in vitro fertilization.

Thus, studies in both animals and humans cannot definitively suggest talc can translocate from the perineal region to the ovaries, which may be necessary for the talc to affect the ovaries. Nonetheless, both animal and human studies have been limiting; studies with monkeys only used a particle similar to talc and human studies involved a lying position that aided in the migration of talc up the genital tract.

How many women using talcum powder get ovarian cancer?

Two types of human studies have investigated, and continue to investigate, the link between talc and ovarian cancer; case-control and cohort studies. The case-control studies gather a group of women diagnosed with ovarian cancer and a group of women with no ovarian cancer. They then ask all women to retrospectively discuss their use of talc on the genital area throughout their life — noting frequency and average amount. The obvious downside to this type of study is that it is open to reporting bias. Some women may forget when or how often they used talc, while others may overestimate their use and further bias may occur if there is an expectancy that talc may have contributed to the onset of ovarian cancer. In contrast, the cohort studies gather a group of women early in life and then have them report in real-time throughout their life how often they use multiple products — including products with talc. After several decades they then compare how many women are diagnosed with ovarian cancer and used talc products, diagnosed with ovarian cancer and did not use talc products, etc. Cohort studies, however, are often limiting because few women are actually diagnosed with ovarian cancer compared to those that are not.

A recent meta-analysis, published this year, gathered 24 case-control and 3 cohort studies investigating the use of talc on the perineal region and its relation to ovarian cancer. Gathering all of these studies into a single analysis, they found that talc powder use on the perineal region is associated with a small increased risk of developing ovarian cancer; however, case-control studies largely contributed to this association — which have obvious disadvantages as outlined above. This positive association was also limited to a single type of ovarian cancer; identified as serous carcinoma — the most common type of ovarian cancer (types of ovarian cancer). Importantly, if reporting bias is affecting the case-control studies, then the association between talc use and ovarian cancer should not be limited to a single type of ovarian cancer. The authors also note that publication bias may also be affecting the case-control studies, meaning that some hospitals may gather information about talc use and ovarian cancer but do not publish their findings because they do not find a link between the two.

In summary, studies with humans do suggest that there is a small positive association between talc use and ovarian cancer; however, these studies are largely limited to case-control studies which have disadvantages of reporting and publication biases. Furthermore, these studies can only tell us about the relative risk of ovarian cancer when using talc. They cannot tell us about the biological basis linking talcum powder use to cancer.

Talcum powder does not cause ovarian cancer

The current evidence from both animal and human studies does not suggest that talc can be directly linked to ovarian cancer. However, both animal and human studies are not perfect. Studies using animals sometimes lack important controls and are not able to properly investigate the specific question at hand without proper animal models (i.e. cynomolgus monkeys). However, animals can be utilized in investigating whether talc is a carcinogen in general because some are especially sensitive to different types of treatments. Studies with humans also have disadvantages due to limitations of subject pools and biases. Despite this, studies with humans somewhat consistently find a link between talc and ovarian cancer, thus humans may be particularly sensitive to talc beyond other animals — although this is highly unlikely given that studies on other mammals suggest no direct relationship.

Importantly, there are many more studies on animals and humans that investigate the link between talc and cancer that I did not include in this brief discussion. Therefore, it is important to note that in a recent review in 2015, the Cosmetic Ingredient Review Expert Panel reported that talc is safe to use in standard practices with normal concentrations. They also note that there is:

  • Absence of persuasive evidence that talc can migrate from the perineum to the ovaries
  • Lack of consistent statistically significant positive associations across studies
  • Failure to rule out plausible alternative explanations of statistically significant results, including biases, risk factors, and exposure to misclassifications
  • Absence of a plausible biological mechanism
  • Lack of credible, defensible evidence of carcinogenicity from results of epidemiological studies of occupational exposures and animal bioassays

Thus, more research is necessary to determine whether talc is linked to ovarian cancer, despite what the Los Angeles courts might say.

Justin Varholick

 

References

Berge, W., Mundt, K., Luu, H. and Boffetta, P. 2017. Genital use of talc and risk of ovarian cancer: a meta-analysis. European Journal of Cancer Prevention.

Fiume, M.M., Boyer, I., Bergfeld, W.F., Belsito, D.V., Hill, R.A., Klaassen, C.D., Liebler, D.C., Marks, J.G., Shank, R.C., Slaga, T.J., Snyder, P.W. and Andersen, F.A. 2015. Safety assessment of talc as used in cosmetics. International journal of toxicology 34(1 Suppl), p. 66S–129S.

Reid, B.M., Permuth, J.B. and Sellers, T.A. 2017. Epidemiology of ovarian cancer: a review. Cancer biology & medicine 14(1), pp. 9–32.

Wehner, A.P. 2002. Cosmetic talc should not be listed as a carcinogen: comments on NTP’s deliberations to list talc as a carcinogen. Regulatory Toxicology and Pharmacology 36(1), pp. 40–50.

Found in Translation: Using a Personal Tragedy to Drive Innovative Research

Kathryn Henley is a doctoral candidate at the University of Alabama at Birmingham. She studies pain in animals, currently pigs, trying to understand the different and often subtle signs that animals may be in pain. In this post, she explains why her research is important – both to the development of good animal welfare and the development of better pain management in humans.

Ten years ago, my dad fell off a ladder while he was cleaning the gutters on our house. Although he only fell five feet, the position in which he fell broke vertebrae in his neck. He was taken via MedFlight to a specialty hospital, where a neurosurgeon diagnosed him with a C4/5 complete spinal cord injury. In simple terms, he was paralyzed from the chest down and could not move or feel anything below that level.

One unfortunate side effect of spinal cord injury is that while the ability to feel internal stimuli (e.g., needing to go to the bathroom) and external stimuli (e.g., someone touching your hand) is lost, the majority of people with spinal cord injury live with the feeling of pain. This pain is usually severe and can significantly affect their physical capabilities, mental and emotional health, and social activities.  For example, my dad’s pain made it extremely difficult for him to participate in rehabilitation. I would often bring him to physical therapy where he would sit with cold packs on his shoulders instead of performing exercises to help him regain function. The medications available to treat pain after an injury to the central nervous system are few. Most of the medications my dad tried failed to provide adequate relief, and the few that did were highly addictive or left him feeling “out of it.” He usually chose not to take his medication and to live with the pain rather than dealing with the side effects.

I find the lack of effective therapeutics for pain extremely frustrating. If the number of preclinical studies of pain is increasing, why haven’t they translated into pain relief for people like my dad? In general, pain is extremely hard to measure. There is no biomarker for pain and we can’t ask the animals how they are feeling or have them fill out a survey. However, we can make observations about their behavior. One way pain is assessed in animals is measuring withdrawal reflexes. This is the same reflex that humans experience when we touch a hot stove and immediately pull back our hand. However, this is a spinal reflex that occurs so quickly, it happens before the feeling of pain reaches your sensory cortex. This is problematic for the study of pain after spinal cord injury because axons in the spinal cord that carry pain signals to the cortex may be damaged. In other words, the injury may prevent pain information from reaching the brain even though the withdrawal reflexes remain intact. Therefore, we can’t assume that there is pain sensation below the level of a spinal cord injury even if there is a withdrawal reflex. Additionally, the most devastating part of living with pain is the physical, emotional, and mental effects of feeling the pain, not withdrawal responses. My research focuses on behaviors in animals that tell us when there is a “feeling” of pain that reaches the sensory cortex and then results in a behavioral reaction.

The first behavior I examine is the “pain face,” also known as a grimace. When humans are in pain, we grimace by narrowing our eyes, wrinkling our nose, and raising our upper lip. Animals also grimace by changing certain parts of their faces, including their eyes, ears, cheeks, and nose or snout. An assessment called the grimace scale was first developed in mice by Dr. Jeffrey Mogil at McGill University in Canada. The grimace scale has since been translated to rats, rabbits, cats, pigs, sheep, and horses. Researchers have found that mice with lesions to their insular cortex don’t grimace. Because the insular cortex is involved in the emotional component of pain in humans, this may indicate that grimacing reflects the emotional effect of pain.

Example of the Rat Grimace Scale. There are four action units in the rat’s face that change with pain: the eyes, ears, whiskers, and nose/cheek. Image source: K. Henley, unpublished.

I also use vocalizations to measure pain. Some animals vocalize to communicate when they are in pain because this ultimately benefits them and promotes the survival of their species. However, other animals like mice and rats may not vocalize when they feel pain because this would attract predators. Right now, I am characterizing the vocal repertoire of pigs. This means I record all the sounds that pigs make and classify them based on how they sound and look on a spectrogram. Sound analysis software enables me to analyze different components of their calls in detail, so I can determine even slight differences in duration and frequency. Knowing all their calls will allow me to better assess differences when using their vocalizations as an outcome measure. So far, I have characterized 16 different call types. Did you know that pigs bark?!

One important consideration when assessing pain is the confounding effect of other mental and emotional states, such as stress or anxiety. Animals may behave differently because of stress, regardless of whether they are in pain or not. As such, we take extreme care to ensure our animals feel safe and comfortable in their environment. We allow the animals to acclimate to their new space for three days after their arrival, without any interaction with study staff. On the following days, we slowly habituate them to our presence by offering treats and other positive reinforcement. We do not begin any study-related procedures until each animal can be calmly approached and touched by the investigators. Many prey animals will hide signs of pain from predators; therefore, it is vital that our animals do not feel threatened at any time. In fact, the pigs enjoy our presence very much (as it typically accompanies food) and I enjoy spending time getting to know each individual animal. They are also acclimated to any rooms, equipment, or procedures they will experience in the study to reduce any effects from stress or anxiety.

I love my research because it serves a dual purpose: to help both animals AND people like my dad live pain-free. The more I learn about animals and their behavior, the more information there is to guide animal welfare policies in both biomedical research and the production (farm) industry. This means that scientists, veterinarians, laboratory animal technicians, and farm personnel will have access to better tools to assess whether an animal is pain and if a pain medication is working. In addition, more accurate assessments of pain will lead to more valid results from preclinical studies. This means that people like my dad will have better options to help manage their pain and be able to achieve a better quality of life.

Kathryn Henley

Veteran speaks up for the importance of allowing canine research to continue at the VA Medical Center

On July 26, 2017, the House of Representatives passed an amendment (proposed by Rep. Brat) to a spending bill that would ban all medical research at the Department of Veterans Affairs that could cause pain to dogs. The spending bill itself has not yet passed, however if such a bill was to be passed with the amendment, and also approved by the Senate, it would do huge damage to important medical research conducted by the VA.

The following article by Sherman Gillums Jr was originally published in The Hill on August 8, 2017 under the title “Devaluing human life is no way to thank wounded veterans for their service“. It is reproduced here with permissions from both The Hill and the original author. Sherman Gillums Jr. is a retired U.S. Marine officer who suffered a spinal cord injury in 2002 while serving on active duty. His career with Paralyzed Veterans of America started in 2004 after he completed rehabilitation at the San Diego VA Spinal Cord Injury & Disease Center. He is an alum of University of San Diego and Harvard Business School.


For a veteran facing a lifetime of paralysis after suffering a spinal cord injury, hope is often the last thing to die. Yet, the recently introduced House bill, H.R. 3197, threatens to crush what little hope to which I, and the approximately 60,000 veterans living with spinal cord injury, cling. The act proposes to reduce investment in medical research, and the reason is as simple as it is controversial: animal research.

Introduced by Rep. Dave Brat (R-Va.), the Act follows reports of experimentation on dogs at the McGuire VA Medical Center in the congressman’s home state. Purportedly disturbing reports revealed that animals were being given amphetamines and suffering heart attacks, among other research-based details that aren’t easily digestible by those outside of the scientific community. The mainstream gut reaction that followed these revelations was easy to predict. When contemplated in a vacuum, the thought of animals experiencing induced pain would bother any reasonable person. However, I do not enjoy the luxury of contemplating these thoughts in a vacuum.

My thoughts immediately shift to the 23-year old soldier I met on a spinal cord injury unit in San Diego. He had a freshly severed spinal cord, fixators that held the bones in his legs together, and chronic pain that often kept him awake all night, despite medication. He also had a two-year old daughter, Marianna, who knew nothing about an explosive device, or how the one that hit her father would change her life forever. Then the two thoughts clashed and bred possibilities— hope —that sprang from what research might offer to him and his daughter. A hope that may now be dying for him, me and those 60,000 other veterans who could benefit from that research.

dog, animal testing, animal experiment

“VA’s canine research that spurred the development of the cardiac pacemaker and artificial pancreas the Food and Drug Administration approved just last year, which serves to benefit both veterans and those who have never worn the uniform” [This image was not part of the original article]

When House members voted on July 26, 2017 to ban all VA medical research that causes pain to animals, specifically targeting VA’s canine research program, it was the first step toward a complete devaluation of the lives of catastrophically injured veterans. Brat declared, “From what I read, the type of work that [VA researchers] were doing was on the level of torture.”

I understand how reading a report like that would spur intense emotion and abstract horror. But if the congressman had put down the report and accompanied me to a VA hospital, he would have discovered that the price of military service is not abstract. He would have seen firsthand what it’s like to care for a paralyzed veteran with a failing heart on a VA spinal cord injury unit; or another on the polytrauma unit who needs a new pancreas, among other missing body parts that need to be replaced. After that reality check, I’d have asked the congressman, to consider these facts: It was VA’s canine research that spurred the development of the cardiac pacemaker and artificial pancreas the Food and Drug Administration approved just last year, which serves to benefit both veterans and those who have never worn the uniform. Non-VA canine research has also led to the discovery of insulin, new tests and treatments for various types of cancer and has played an important role in ushering in advancements in heart surgery procedures. While that reality may be inconvenient, it’s like freedom and democracy; it all comes at a price. I’d rather that price involve as little human suffering as possible. It’s apparent, however, not everyone agrees.

I would like to leave the legislative debate to the congressman and his colleagues, but it’s the ideology behind this bill that troubles me.  Those participating in the debate over the VA’s animal research program appear to fall into two camps: those who believe we should do everything we can to improve the lives of seriously injured veterans, and those who refuse to stare the ugly consequences of war in the face. It is not that simple though. The U.S. military faces the ugliness for its citizens, which includes our public servants.  Now that those citizens are faced with the aftermath, some are having second thoughts.

The VA has a responsibility to consistently find new and better ways of treat America’s heroes. Animal research helps the department do that. The program has helped save and improve countless lives, and it will continue to do so—unless ideology, and in some cases extremism on the issue of animal rights, succeed in forcing the public’s attention away from VA waiting rooms, inpatient wards, and rehabilitation gyms across the country. This is where the price of wars across several eras can be seen almost daily, as well as where medicine and science find their ripest opportunities.

Medical and scientific experts in America, as well as across the globe, agree animal research is essential. That’s because only animal research will provide the answers needed to develop revolutionary new treatments. Whether we like it or not, canine research is especially vital to potential medical breakthroughs because of unique traits shared by humans and dogs. In fact, CNN recently highlighted in a February 2017 story how canine research is leading to better results than traditional cancer research efforts.

Despite the hyperbole used by legislators to invoke disturbing images, VA is conducting research that is vital to seriously disabled veterans.  That is what cannot be forgotten or eclipsed by words hyperlinked to extreme ideologies. Canine studies address a host of medical problems afflicting them, and it advances treatments that heal them, or at the very least, mitigate their suffering and give them a better quality of life. I’ve seen it for myself, as Paralyzed Veterans of America has collaborative partnerships with Yale University and New Haven VA Medical Center to further the treatment advances that make veterans’ sacrifices endurable.

The research conducted at these facilities includes exploring cures and treatments for fatal lung infections affecting those with spinal cord injuries, dysfunction in brain circuits that control breathing, and whether service dogs reliably reduce the symptoms of post-traumatic stress disorder. Orthopedics research conducted with animals is especially important to many VA patients, as it has been essential to the design and testing of new prosthetic devices for veterans who have lost limbs.

Much of the animal research VA is doing aims to benefit a small group of veterans with specialized needs — those who’ve sustained serious injuries in the line of duty. As a veteran who represents tens of thousands within this group, veterans who stand to benefit from VA’s animal research efforts, I am compelled to challenge those who are fighting to shut this vital program down. I ask them, instead, to take a step back and look at things from our perspective.  We are veterans who live with severe disability, many still in the prime of our lives. Our lives after service will never be the same as our lives before service, but advances in research will help us experience lives with less pain—and more hope.

It is my sincere hope there will come a time when we don’t need animals for research. Unfortunately, that time has not arrived, and because of the incredible complexity of human anatomy and our still-limited understanding of how it works, animal research will be needed for the foreseeable future. To those who remain unconvinced, I’ll close with two questions: What wouldn’t you do to find a cure for spinal cord injury, cancer, chronic lung infection, orthopedic deterioration, or other serious afflictions associated with military service? Then, what would you do if it was your son or daughter who served and returned home profoundly broken by battle, illness or disease?

For many veterans and their families, these questions are not philosophical. Because for them, hope is indeed the last thing to die. It is now up to Congress to decide whether that hope will be put completely out of its misery.

Sherman Gillums Jr

Science Magazine discusses the transparency surrounding animal research

Last month, Science published an article entitled “A trans-Atlantic transparency gap on animal experiments” (online version: To woo public, Europe opens up on animal experiments, but U.S. less transparent”). The article, by Meredith Wadman, noted some of the ways in which US and UK organizations are trying to educate the public about animal experiments including the Lab Animal Tour (UK) and Come See Our World (US) initiatives. However, it also noted differences between the countries – particularly in the university sector.

Using the Speaking of Research list of public animal research statements, we can see the trans-Atlantic differences among universities. Of the 65 US universities on the list (a fraction of those that conduct animal research across the whole country), only 8 (12%) get two or more ticks (out of four), and only 3 (5%) get three ticks or more. This compares badly to the UK where, of the 48 universities on the list (representing most universities conducting animal research in the country), 33 (69%) get two or more ticks and 23 (48%) get three or more ticks.

The article also brought to light the declines in support for animal research in both countries – though the UK may currently be reversing that trend – something some people attribute to launch and spread of the Concordat on Openness on Animals in Research – where organizations pledge to be more proactive about explaining their animal research. An example of this can be seen in October 2016 when the top ten UK research universities press released the number of animals they used in research that year. It should be noted that most large British universities now post their animal research numbers on their website.

Credits: J. You/Science; (Data) Ipsos MORI, Gallup

The decline in support for animal research in the US is reflected in other polling also. The Pew Research Center’s polling suggests that support for “animals in scientific research” has fallen from 52% (43% against) in 2009 to 47% support (50% against) in 2014. Many people have questioned whether it is time for a US Concordat to be launched – and certainly Speaking of Research would support any such efforts to make animal research more transparent.

The Science article briefly looked at different approaches to animal research advocacy, from the limited information provided by institutions like Harvard, Stanford and John Hopkins, compared to the wealth of information provided by organisations like the University of Wisconsin Madison.

While this article only touches the surface of the problem of transparency, and cannot fully be expected to appreciate the huge variation in practice within countries as well as between them, it is still a worthwhile read for anyone interested in how we communicate animal research.

Speaking of Research

Research Roundup: Combatting Zika virus, Understanding the brain, reprogramming skin cells, and more

Welcome to this week’s Research Roundup. These Friday posts aim to inform our readers about the many stories that relate to animal research each week. Do you have an animal research story we should include in next week’s Research Roundup? You can send it to us via our Facebook page or through the contact form on the website.

  • A new model to study the transmission of Zika virus. Scientists at the National Institutes of Health (NIH) have developed a mouse model to study the transmission of Zika from males to females, as well as from females to their fetuses. Scientists from the National Institute of Allergy and Infectious Diseases (NIAID) devised a way to make the typically-difficult mouse model be a reliable Zika model. Mice naturally defend against Zika better than people because they have a stronger interferon response. The scientists discovered a way to suppress the interferon in these mice, called anti-interferon Rag (AIR) mice, which have prolonged virus infection in the testes — similar to Zika-infected men. AIR mice also exhibited vertical transmission of Zika from mother to fetus. Intriguingly, only some fetuses from each female were infected with Zika, suggesting that the placenta may be a crucial barrier in preventing the virus from reaching the fetus and thereby resulting in birth defects. The research was published in Scientific Reports and is freely available online.
  • Scientists at Ohio State University have used mice develop a new way to reprogram skin cells. This could represent a breakthrough in repairing injured or ageing tissue. The new technique, called tissue nanotransfection, is based on a tiny device that sits on the surface of the skin of a living body. An intense, focused electric field is applied, allowing it to deliver genes to the skin cells beneath it – turning them into different types of cells. The device was put on the skin of the mice with legs that had had their arteries cut, preventing blood flow through the limb. The team found that they were able to convert skin cells directly into vascular cells -with the effect extending deeper into the limb, in effect building a new network of blood vessels. “Seven days later we saw new vessels and 14 days later we saw [blood flow] through the whole leg,” said Dr. Chandan Sen, from the Ohio State University. Sen and colleagues say they are are hoping to develop the technique further, with plans to start clinical trials in humans next year. This research was published in Nature Nanotechnology.

  • Neuroscientists are trying to under how tangles of neurons produce complex behaviors. The brain is still largely unknown. Researchers hope to map out simple brains in hopes to see patterns that might be able to be applied to more complex brains.  Researchers at Howard Hughes Janelia Research Campus are studying the brains of fruit fly larvae. The brains of these animals are comprised of 15,000 neurons as compared to 86 billion in the human brain.  Researchers like Albert Cardona and Marta Zlatic‘s feel that a wiring diagram is an important step towards understanding how the central nervous system works.  The nematode’s (C. elegans) brain, at just 300 neurons, was mapped in the 1980’s but scientists question its applicability to larger brains so have sought the fruit fly because it exhibits more complex behaviors and thus more complex neural pathways and actions but there is still much unknown about simple brains. Animals being looked at include the gastric system of crabs, larval zebrafish and specific regions of the brain. Neuroscientists hope that mapping the brain will help to understand why some therapies work for one but not for others and how new therapies can be developed to treat many debilitating diseases.

  • Scientists destroy entire chromosome with CRISPR providing hope for future generations of individuals with aneuploidy, such as Down Syndrome –where an individual has an abnormal number of chromosomes. These researchers first, in vitro, used CRISPR-Cas 9 to induce numerous chromosomal breaks at the centromere on the long arm of the Y chromosome, effectively removing the chromosome from XY embryonic stem cells. Then, using male mice zygotes, in vivo, this team of researchers targeted 41 sites of the Y chromosome centromere, resulting in a 70% efficient removal of the Y chromosome. This research was published in the journal Molecular Therapy.
  • Gold particles increases the efficacy of drug treatments for cancer. Gold can be used as a catalyst in chemical reactions. Researchers from Edinburgh University, using zebrafish investigated whether gold would improve the efficacy of drugs, via catalysis, used to treat lung cancer. Here, gold nanoparticles were encased in a “chemical device”, and the activation of the structure as well as the subsequent release of therapeutics studied — which worked with good efficiency. The lead author, Dr. Unciti-Broceta states “We have discovered new properties of gold that were previously unknown and our findings suggest that the metal could be used to release drugs inside tumours very safely.” This research was published in the journal Angewandte Chemie (Applied Chemistry).

American Psychological Association reaffirms support for animal research

The American Psychological Association (APA) represents its membership of 115,700 researchers, educators, clinicians, consultants and students working across the many subfields of psychology. The APA works to advance the creation, communication, and application of psychological knowledge to benefit society and improve people’s lives. On August 2nd, 2017, the organization reaffirmed its support for the careful use of animals in medical research. Speaking of Research welcome this clear statement of principles. We reproduce that statement below. 


American_Psychological_Association_logo.svg

APA Reaffirms Support for Research with Nonhuman Animals

The American Psychological Association has reaffirmed its long-standing support for ethically sound and scientifically valid research with nonhuman animals and the scientists who conduct it, noting that the application of such research has “significantly improved the health and well-being of both human and nonhuman animals.”

“Historically, laboratory animal research has played a crucial role in the development of theory and research in virtually all sub-disciplines of psychology,” said APA President Antonio E. Puente, PhD, who is a neuropsychologist. “Knowledge gained through research with laboratory animals continues to provide answers to questions important to advancing the science of behavior and to improving the welfare of both humans and other animals.”

Understanding of such processes as learning, attention and cognition and disorders such as addictions, autism and depression has benefited from findings of nonhuman animal studies. Knowledge gained through research with nonhuman animals has also been critical to conservation efforts for various species, in various habitats across the world.

APA’s governing Council of Representatives passed a resolution on the subject Wednesday, reaffirming a resolution that was last adopted in 1990, and is reflected throughout the 125-year history of the organization. The resolution notes nonhuman animal research is foundational to scientific discoveries as is evidenced by the fact that most scientists support such research, and that such research is regulated by federal, state and local jurisdictions, as well as assessed for scientific merit by funding agencies and peer review. Additionally, the resolution asserts the responsibility of scientists themselves to ensure the humane care and treatment of laboratory animals.

The resolution recognizes that the public might not fully appreciate “the nature of nonhuman animal research and its benefits to society, due to overabundance of misinformation and simultaneous dearth of accurate information” in the public domain.

“Nonhuman animal research has proven invaluable for exploring the complexity of diverse behaviors across genetic, molecular, cellular/neuronal, circuit, network, cognitive and behavior levels,” the resolution states. “The assembly and application of findings from nonhuman animal research has contributed to numerous clinical applications that have significantly improved the health and well-being of both human and nonhuman animals.”

Studies that used animals have played a role in the prevention or treatment of conditions as diverse as tuberculosis, diabetes, polio, Parkinson’s disease, muscular dystrophy and high blood pressure — to name just a few benefits of this research. Although such research continues to provide important scientific data and insights, understanding and support of such research has declined in recent years among the American public. Moreover, some activist groups have spread misinformation about this research, have harassed psychologists and other scientists and have destroyed laboratories. APA’s reaffirmation of its position on nonhuman animal research is one step toward strengthening the public’s knowledge and support of this research and the scientists who conduct it, according to Puente.

“APA deplores the harassment of scientists, students and laboratory assistants who have been involved in animal research,” Puente said. “We join with other scholarly organizations in continuing to support ethically sound and scientifically valid research with nonhuman animals.”

APA’s Committee on Animal Research and Ethics, which was founded in 1925, developed and regularly updates its “Guidelines for Ethical Conduct in the Care and Use of Nonhuman Animals in Research.” These guidelines assist researchers in fulfilling their obligation for the humane care and treatment of nonhuman animals in research that is in the public’s interest.