Research Roundup: A new approach to treating Parkinson’s, designer pig organs, the benefits of dragon blood, and more!

Welcome to this week’s Research Roundup. These Friday posts aim to inform our readers about the many stories that relate to animal research each week. Do you have an animal research story we should include in next week’s Research Roundup? You can send it to us via our Facebook page or through the contact form on the website.

  • Scientists may have discovered a new way to treat Parkinson’s disease (PD), a devastating neurological disease that causes tremors, rigid muscles, and changes in speech. In PD, a person’s brain cells (neurons) die causing a reduction in the neurotransmitter, dopamine. Researchers in Sweden were able to reprogram human astrocytes – brain cells that normally support the functions of neurons – to behave more like dopamine producing neurons. They did this by bathing the astrocytes in a petri dish in a number of molecules that affect changes in the cell’s DNA. This proof of concept allowed researchers to take the next step and try this therapy in a mouse model of PD. Injecting the same cocktail of molecules into the brains of PD mice caused the astrocytes to become more like the dopamine producing neurons, and this change lessened the PD symptoms in the mice. Obviously, many more studies are needed before this potential therapy can be tried in human patients with PD, but this is an exciting advancement in our quest to treat this disease. This research was published in Nature Biotechnology.
animal testing, animal research, vivisection, animal experiment

Mice were key to this Parkinson’s breakthrough

  • A new study finds that a reovirus may be implicated in the development of celiac disease. Celiac disease is a serious autoimmune disease where the ingestion of gluten, leads to damage of the small intestine. Gluten is found in many common foods, and is the general name for wheat derived proteins. “It affects 1 in 100 people worldwide, and 2.5 million Americans are undiagnosed and are at risk for long-term health complications”. Mice, were infected orally with two derived forms of a human reovirus, T1L and T3D; both capable of infecting the hosts` intestine but affecting its functioning in different ways. They found that while mice were able to successfully clear the virus from the system; exposure to the virus can disrupt intestinal homeostasis, lead to a loss of oral tolerance to the antigens produced by the body, and promote immunopathology similar to the symptoms of celiac disease. This study will of course need to replicated and further research investigating other reoviruses and the subsequent link to the development of celiac diseases firmly established. This study, using mice, does however, provide hope for the millions of individuals suffering from celiac disease and if a strong link to reoviruses is established; can lead to the development of a vaccination. The research was published in Science.
  • A promising vaccination for Zika virus has been found, reducing the occurrence of congenital abnormalities in mice. Zika virus is an emergent global health threat, that is transmitted by mosquito bites and more recently it has been discovered that it can be passed on via sex with an infected person. The most debilitating effects of the virus are death in the young and elderly are with compromised immune systems and perhaps most strikingly birth defects — in particular, microcephaly; a sign of incomplete brain development. For the first time, these researchers tested a live attenuated version of the Zika virus in mice. In comparison to an inactivated vaccine, live attenuated vaccinations have the advantage of single-dose immunization, rapid and robust immune response, and potentially long-lived protection. They found that this live attenuated vaccination was able to confer sterilizing immunity (complete protection from infection), a robust T-cell immune response, and a promising safety profile; similar to that of other clinically approved vaccinations. This study was published in Nature Medicine.

Illustration of a baby with microcephaly (left) compared to a baby with a typical head size

  • A new study finds that the human body’s peripheral nervous system could be capable of interpreting its environment and modulating pain. The sensation and perception of pain has historically been associated with the brain and the spinal cord (central nervous system(CNS)) and drugs for pain target the CNS. However, these drugs sometimes lead to unintended side effects such as addiction and tolerance. Drugs which target the peripheral system may allows us to avoid these unintended side effects. Using mice, these researchers demonstrated that the peripheral nervous system was able to interpret the type of stimulation it was sensing, although further research is needed to figure out how these sensations are interpreted by the brain. While further replication and validation is needed, this study widens our view of pain, its sensation and potential means of treatment. This study was published in the Journal of Clinical Investigation.

  • Luhan Yang, Chief Scientific Officer at eGenesis, is working to create ‘designer pigs’ which could be used to help alleviate the organ crisis. By inserting up to 12 human genes into pig ova they hope to overcome the rejection problems which currently prevent xenotransplantation from providing viable organs for human use. Yang hopes the use of the gene-editing technique CRISPR will make it possible to create human-animal hybrid organs that can be used to save lives.

  • New study finds that variant of protein in komodo dragon blood (VK25) contains antimicrobials that may one day form the basis of a new antibiotic. Researchers at George Mason University synthesized a new molecule,DRGN-1, based on a peptide found in the blood of the Indonesian lizard. This molecule was shown to promote healing in mice with wounds infected with Pseudomonas aeruginosa and Staphylococcus aureus. This synthetic compound also made these bacteria cell membrane more permeable – making it easier to kill these bacteria. The research was published in Biofilms and Microbiomes

Join the conversation

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s